Synthesis and characterization of tungsten disulfide thin films by spray pyrolysis technique for n-WS2/p-Si junction diode application

  • P. Sumathi
  • J. ChandrasekaranEmail author
  • R. Marnadu
  • S. Muthukrishnan
  • S. Maruthamuthu


Tungsten disulfide (WS2) thin films were deposited on the glass substrate by varying its temperature from 350 to 500 °C using jet nebulizer spray pyrolysis (JNSP) technique. The WS2 thin films were characterized through various techniques such as X-ray diffraction (XRD), scanning electron microscopy (SEM), Energy dispersive X-ray analysis (EDX), UV–Visible spectroscopy (UV), photoluminescence (PL), Hall measurements and current–voltage (I–V) characteristics. XRD pattern revealed that the prepared WS2 films are polycrystalline in nature with rhombohedral and hexagonal crystal structures. The average crystallite size of WS2 thin films changed from 52.23 to 47.40 nm. SEM images showed the uniform grain size, which is agglomerated at the higher substrate temperature. The presence of elements like W and S was confirmed through EDX spectrum. From UV analysis, the minimum optical band gap and maximum absorption was obtained for the film deposited at 450 °C. The WS2 thin films exhibited an n-type semiconductor nature with the carrier concentration of 1014 cm−3, which was demonstrated through hall measurements. Also, the electrical resistivity of the WS2 films varied from 3.26 × 105 to 1.59 × 107 Ω cm. The p-Si/n-WS2 junction diode was fabricated with various substrate temperature of (350–500 °C). Junction diode parameters like ideality factor (n), barrier height (ϕB) and reverse saturation current (Io) values were calculated and interpreted based on the thermionic emission theory model.



The authors gratefully acknowledge the financial support from the DST, Government of India, for the major research project (EMR/2016/007874).


  1. 1.
    J.J. Devadasan, C. Sanjeeviraja, M. Jayachandran, J. Cryst. Growth 3, 67 (2001)CrossRefGoogle Scholar
  2. 2.
    A. Ennaoui, K. Diesner, S. Fiecter, J. Mooser, F. Levy, J. Thin Solid Films 311, 146 (1997)CrossRefGoogle Scholar
  3. 3.
    H. Tributsch, H. Gerischer, C. Clemen, E. Bucher, J. Phys. Chem. 83, 655 (1979)Google Scholar
  4. 4.
    Y. Tomm, S. Fiechter, J. Ceram. Process. 6, 141 (2005)Google Scholar
  5. 5.
    A. Yilei Li, X. Chernikov, A. Zhang, H.M. Rigosi, A.M. Hill, D.A. van der Zande, E.-M. Chenet, J. Shih, T.F. Hone, Heinz, Phys. Rev. B 90, 205422 (2014)CrossRefGoogle Scholar
  6. 6.
    P. Roy, S.K. Srivastava, Thin Solid Films 496, 293 (2006)CrossRefGoogle Scholar
  7. 7.
    P.P. Hankare, A.A. Patil, P.A. .Chate, K.M. Garadkar, D.J. .Sathe, A.H. Manikshete, I.S. Mulla, J. Cryst. Growth 311, 15 (2008)CrossRefGoogle Scholar
  8. 8.
    G. Chatzitheodoru, S. Fiechter, M. Kunst, J. Luck, H. Tributsh, Mater. Res. Bull. 23, 1261 (1988)CrossRefGoogle Scholar
  9. 9.
    S.B. Sadale, S.R. Barman, P.S. Patil, Appl. Surf. Sci. 253, 3489 (2007)CrossRefGoogle Scholar
  10. 10.
    D. Tonti, F. Varsano, F. Decker, C. Gallif, M. Regulla, M. Remkar, J. Phys. Chem. B 101, 2485 (1997)CrossRefGoogle Scholar
  11. 11.
    A.A. Voevodin, J.S. Zabinski, J. Thin Solid Films 370, 223 (2000)CrossRefGoogle Scholar
  12. 12.
    A.A. Voevedin, J.P.O. Neull, J.S. Zabinski, J. Surf. Coat. Technol. 36, 116 (1999)Google Scholar
  13. 13.
    K. Ramnathan, S.W. Weller, J. Catal. 96, 249 (1985)CrossRefGoogle Scholar
  14. 14.
    M.R. Hoffman, S.T. Martin, W. Choi, D.W. Bahnemann, Chem. Rev. 95, 69 (1995)CrossRefGoogle Scholar
  15. 15.
    J.W. Chung, Z. RDai, F.S. Ohuchi, J. Cryst. Growth 186, 137 (1988)CrossRefGoogle Scholar
  16. 16.
    M. Genut, R. Tenne, G. Hodes, J. Thin Solid Films 219, 30–35 (1992)CrossRefGoogle Scholar
  17. 17.
    M. Regula, C. Ballif, J.H. Moser, F. Levy, J. Thin Solid Films 280, 67 (1996)CrossRefGoogle Scholar
  18. 18.
    T. Tsrillina, S. Cohen, H. Cohen, L. Spair, M. Peisach, R. Tenne, A. Matthaeus, S. Tiefenbacher, W. Jaegermann, E.A. Ponomarev, C. Levy-Clement, Solar Energy Mater. 44, 457 (1996)CrossRefGoogle Scholar
  19. 19.
    J. Zabinski, M.S. Donley, N.T. Mc Devitt, S.V. Prasad, J. Mater. Sci. 58,, 4834 (1994)CrossRefGoogle Scholar
  20. 20.
    S. Mahato, D. Biswas, L.G. Gerling, C. Voz, J. Puigdollers, AIP Adv. 7, 085313 (2017)CrossRefGoogle Scholar
  21. 21.
    S. Alialy, S. Altndal, E.E. Tanrkulu, D.E. Yldz, J. Appl. Phys. 116, 083709 (2014)CrossRefGoogle Scholar
  22. 22.
    M. Balaji, J. Chandrasekaran, M. Raja, J. Mater. Sci. Semicond. Process 43, 104 (2016)CrossRefGoogle Scholar
  23. 23.
    R. Marnadu, J. Chandrasekaran, M. Raja, M. Balaji, V. Balasubramani, J. Mater. Sci.-Mater. Electron. 29, 2618 (2018)CrossRefGoogle Scholar
  24. 24.
    S. Alfihed, M. Hossain, A. Alharbi, A. Alyamani, F.H. Alharbi, J. Mater. (2013) CrossRefGoogle Scholar
  25. 25.
    D. Zhanga, Y. Jiab, J. Chaic, Z. Xu, Z. Zhaoe, M. Caof, Adv. Eng. 100, 434 (2017)Google Scholar
  26. 26.
    A. Begum, A. Hussain, A. Rahman, Beilstein J. Nanotechnol. 3, 438 (2012)CrossRefGoogle Scholar
  27. 27.
    R. Marnadu, J. Chandrasekaran, M. Raja, M. Balaji, S. Maruthamuthu, P. Balraju, Superlatt. Microstruct. 119, 134 (2018)CrossRefGoogle Scholar
  28. 28.
    C. Chen, E.M. Kelder, P.J.J.M. van der Put, J. Schoonman, J. Mater. Chem. 6, 765 (1996)CrossRefGoogle Scholar
  29. 29.
    J.N. Yao, K. Hashimoto, A. Fujishima, Nature 355, 624 (1992)CrossRefGoogle Scholar
  30. 30.
    R. Suresh, V. Ponnuswamy, R. Mariappan, N. SenthilKumar, Ceram. Int. 40, 437 (2014)CrossRefGoogle Scholar
  31. 31.
    S.M. Sze, Semiconductor Devices, 2nd edn. (Wiley, New York, 2001) p. 224Google Scholar
  32. 32.
    R. Coehroon, C. Hass, R.A. De Groot, J. Phys. Rev. B 35, 6203 (1987)CrossRefGoogle Scholar
  33. 33.
    W. Zhao, Z. Ghorannevis, L. Chu, M. Toh, C. Kloc, P. Heng, G. Tan, Eda, ACS Nano 7, 791 (2013)CrossRefGoogle Scholar
  34. 34.
    C. wang, S. Yang, W. Xiong, C. Xia, H. Cai, B. Chen, X. Wang, X. Zhang, Z. Wei, S. Tongay, J. Li, Q. Liu, ACS Appl. Mater. Interfaces 8, 1398 (2016)CrossRefGoogle Scholar
  35. 35.
    P.P. Hankare, A.H. Manikshete, D.J. Sathe, P.A. Chate, A.A. Patil, K.M. Gardkar, J. Cryst. Growth 311, 3386 (2009)CrossRefGoogle Scholar
  36. 36.
    P.P. Hankare, P.A. Chate, J. Mater. Chem. Phys. 117, 347 (2009)CrossRefGoogle Scholar
  37. 37.
    S.J. Helen, S. Devadason, T. Mahalingam, J. Mater. Sci.-Mater. Electron. 27, 4426 (2016)CrossRefGoogle Scholar
  38. 38.
    S. Muthukrishnan, T.A. Venkat Subramanian, T. Mahalingam, S.J. Helen, P. Sumathi, J. Mater. Sci.-Mater. Electron. 28, 4211–4218 (2017)CrossRefGoogle Scholar
  39. 39.
    E.H. Rhoderick, R.H. Williams, Metal Semiconductor Contacts, (Clarendon Press, Oxford, 1998), p. 25Google Scholar
  40. 40.
    T.T.A. Tuan, D.H. Kuo, J. Mater. Sci. Semicond. Process. 25(Iss 8), 3264–3270 (2014)Google Scholar
  41. 41.
    R. Priya, M. Sethu Raman, N. Senthil Kumar, J. Chandrasekaran, R. Balan, J. Optics 127, 7913 (2016)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysicsSri Ramakrishna Mission Vidyalaya College of Arts and ScienceCoimbatoreIndia
  2. 2.Department of ECSKarpagam Academy of Higher EducationCoimbatoreIndia
  3. 3.Department of PhysicsDr. Mahalingam College of Engineering and TechnologyPollachiIndia

Personalised recommendations