Enhanced breakdown strength and energy density of PVDF composites by introducing boron nitride nanosheets

  • Xiaohan Peng
  • Xiaolin LiuEmail author
  • Peng Qu
  • Bing Yang


Boron nitride nanosheets (BN NSs) with about 2 nm thickness and 200–400 nm lateral sizes were prepared by ultrasonically exfoliating bulk boron nitride (BN) powders in deionized water (DI). BN NSs/polyvinylidene fluoride (PVDF) composites were fabricated by a solution casting method. The enhanced breakdown strength and energy density of the composites were obtained at a low BN NSs weight fraction. The maximum breakdown strength and discharged energy density of 8 wt% BN NSs/PVDF composites reached to 486 kV/mm and 7.25 J/cm3, respectively, which led to 54 and 99% increase compared with pure PVDF (306 kV/mm, 3.63 J/cm3). Meanwhile, the loss tangent of BN NSs/PVDF composites was lower than pure PVDF. The enhanced dielectric properties could be attributed to BN NSs with high insulation and wide band gap. In addition, two-dimensional (2D) BN NSs fillers tended to be perpendicular to the applied electric field and effectively acted as insulating barriers to improve the breakdown strength and energy density.



This work was supported by National Natural Science Foundation of China (CN) (Grant No. 51372014).


  1. 1.
    P. Barber, S. Balasubramanian, Y. Anguchamy, S. Gong, A. Wibowo, H. Gao, H.J. Ploehn, H. Loye, Materials 2, 1697 (2009)CrossRefGoogle Scholar
  2. 2.
    K. Yu, Y. Niu, Y. Bai, Y. Zhou, H. Wang, Appl. Phys. Lett. 102, 102903 (2013)CrossRefGoogle Scholar
  3. 3.
    H. Liu, S. Luo, S. Yu, S. Ding, Y. Shen, R. Sun, C. Wong, IEEE Trans. Dielectr. Electr. Insul. 24, 757 (2017)CrossRefGoogle Scholar
  4. 4.
    S. Zhong, Z. Dang, W. Zhou, H. Cai, IET Nanodielectr. 1, 41 (2018)CrossRefGoogle Scholar
  5. 5.
    S. Liu, J. Zhai, J. Wang, S. Xue, W. Zhang, ACS Appl. Mater. Interfaces 6, 1533 (2014)CrossRefGoogle Scholar
  6. 6.
    H.M. Jung, J.H. Kang, S.Y. Yang, J.C. Won, S.K. Yong, Chem. Mater. 22, 450 (2010)CrossRefGoogle Scholar
  7. 7.
    J. Li, S.I. Soek, B. Chu, F. Dogan, Q. Zhang, Q. Wang, Adv. Mater. 21, 217 (2009)CrossRefGoogle Scholar
  8. 8.
    P. Kim, N.M. Doss, J.P. Tillotson, P.J. Hotchkiss, M.J. Pan, S.R. Marder, J. Li, J.P. Calame, J.W. Perry, ACS Nano 3, 2581 (2009)CrossRefGoogle Scholar
  9. 9.
    R. Vogelsang, T. Farr, K. Fröhlich, IEEE Trans. Dielectr. Electr. Insul. 13, 373 (2006)CrossRefGoogle Scholar
  10. 10.
    A.A. Gusev, H.R. Lusti, Adv. Mater. 13, 1641 (2001)CrossRefGoogle Scholar
  11. 11.
    Y. Shen, J. Du, X. Zhang, X. Huang, Y. Song, H. Wu, Mater. Express 6, 277 (2016)CrossRefGoogle Scholar
  12. 12.
    V. Tomer, E. Manias, C.A. Randall, J. Appl. Phys. 110, 044107 (2011)CrossRefGoogle Scholar
  13. 13.
    Y. Liu, S. Bhowmick, B.I. Yakobson, Nano Lett. 11, 3113 (2011)CrossRefGoogle Scholar
  14. 14.
    S. Saha, M. Jana, P. Khanra, P. Samanta, H. Koo, N.C. Murmu, T. Kuila, ACS Appl. Mater. Interfaces 7, 14211 (2015)CrossRefGoogle Scholar
  15. 15.
    J.E. Padilha, R.B. Pontes, A. Fazzio, J. Phys.: Condens. Matter 4, 075301 (2012)Google Scholar
  16. 16.
    W. Luo, Y. Wang, E. Hitz, Y. Lin, B. Yang, L. Hu, Adv. Funct. Mater. 27, 1701450 (2017)CrossRefGoogle Scholar
  17. 17.
    Y. Lin, T.V. Williams, T.B. Xu, W. Cao, H.E. Elsayedali, J.W. Connell, J. Phys. Chem. C 115, 2679 (2011)CrossRefGoogle Scholar
  18. 18.
    Q. Li, G. Zhang, F. Liu, K. Han, M.R. Gadinski, C. Xiong, Q. Wang, Energy Environ. Sci. 8, 922 (2015)CrossRefGoogle Scholar
  19. 19.
    Z. Dang, J. Yuan, S. Yao, R. Liao, Adv. Mater. 25, 6334 (2013)CrossRefGoogle Scholar
  20. 20.
    Z. Dang, J. Yuan, J. Zha, T. Zhou, S. Li, G. Hu, Prog. Mater. Sci. 57, 660 (2012)CrossRefGoogle Scholar
  21. 21.
    K. Deshmukh, M.B. Ahamed, K.K. Sadasivuni, D. Ponnamma, R.R. Deshmukh, A.M. Trimukhe, S.K. Pasha, A.R. Polu, M. Almaadeed, K. Chidambaram, J. Polym. Res. 24(2), 27 (2017)CrossRefGoogle Scholar
  22. 22.
    D. Fragiadakis, P. Pissis, L. Bokobza, Polymer 46, 6001 (2005)CrossRefGoogle Scholar
  23. 23.
    B. Luo, X. Wang, Y. Wang, L. Li, J. Mater. Chem. A 2, 510 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Organic-Inorganic CompositesBeijing University of Chemical TechnologyBeijingPeople’s Republic of China

Personalised recommendations