Advertisement

Thin films of chlorosubstituted vanadyl phthalocyanine: charge transport properties and optical spectroscopy study of structure

  • Tamara V. Basova
  • Vitaly G. Kiselev
  • Darya D. Klyamer
  • Aseel Hassan
Article
  • 39 Downloads

Abstract

Electrophysics and structure of thin films of chlorosubstituted vanadyl phthalocyanine (VOPcCl16) were studied using complementary experimental and theoretical techniques. To study charge transport properties of the latter films, organic field-effect transistors were fabricated by physical vapor deposition. The device exhibited good air stability without any extent of degradation after a storage in air for two months. The charge carrier mobility was measured to be (2.0 ± 0.1) × 10−3 cm2 V−1 s−1. This value was rationalized by poor ordering of the VOPcCl16 films revealed with the use of polarization dependent Raman and UV–Vis spectroscopies as well as by X-ray diffraction. Apart from this, we performed a detailed assignment of all intense bands in the vibrational spectra of VOPcCl16. To this end, the experimental IR and Raman data were complemented by quantum chemical calculations at the B3LYP/6-311++G(2df,p) level of theory.

Notes

Acknowledgements

V.G.K. acknowledges FASO of Russian Federation for a financial support of the computational part of this work (project 0304-2016-0005) and T.V.B. and D.D.K—for a support of the experimental part (project 0300-2016-0007). Support by the German Supercomputer Center is also acknowledged.

Supplementary material

10854_2018_9773_MOESM1_ESM.docx (120 kb)
Supplementary material 1 (DOCX 119 KB)

References

  1. 1.
    N.B. McKeown, in Applications of Phthalocyanines. The Porphyrin Handbook, ed. by K.M. Kadish, R. Smith, R. Guilard (Academic Press, San Diego, 2003), p. 61CrossRefGoogle Scholar
  2. 2.
    Z.A. Bao, A.J. Lovinger, J. Brown, J. Am. Chem. Soc. 120, 207 (1998)CrossRefGoogle Scholar
  3. 3.
    S. Hiller, D. Schlettwein, N.R. Armstrong, D. Wohrle, J. Mater. Chem. 8, 945 (1998)CrossRefGoogle Scholar
  4. 4.
    M.M. Ling, Z.N. Bao, Org. Electron. 7, 568 (2006)CrossRefGoogle Scholar
  5. 5.
    Q.X. Tang, H.X. Li, Y.L. Liu, W.P. Hu, J. Am. Chem. Soc. 128, 14634 (2006)CrossRefGoogle Scholar
  6. 6.
    Q.X. Tang, Y.H. Tong, H.X. Li, W.P. Hu, Appl. Phys. Lett. 92, 083309 (2008)CrossRefGoogle Scholar
  7. 7.
    H. Jiang, J. Ye, P. Hu, F.X. Wei, K.Z. Du, N. Wang, T. Ba, S.L. Feng, C. Kloc, Sci. Rep. 4, 7573 (2014)CrossRefGoogle Scholar
  8. 8.
    H. Peisert, M. Knupfer, J. Fink, Synth. Methods 137, 869 (2003)CrossRefGoogle Scholar
  9. 9.
    H. Peisert, M. Knupfer, J. Fink, Surf. Sci. 515, 491 (2002)CrossRefGoogle Scholar
  10. 10.
    S.M. Yoon, H.J. Song, I.C. Hwang, K.S. Kim, H.C. Choi, Chem. Commun. 46, 231 (2010)CrossRefGoogle Scholar
  11. 11.
    P.A. Pandey, L.A. Rochford, D.S. Keeble, J.P. Rourke, T.S. Jones, R. Beanland, N.R. Wilson, Chem. Mater. 24, 1365 (2012)CrossRefGoogle Scholar
  12. 12.
    M.M. Ling, Z.N. Bao, P. Erk, Appl. Phys. Lett. 89, 163516 (2006)CrossRefGoogle Scholar
  13. 13.
    R. Decreau, M. Chanon, M. Julliard, Inorg. Chim. Acta 293, 80 (1999)CrossRefGoogle Scholar
  14. 14.
    R. Koshy, C.S. Menon, E-J. Chem. 9, 2439 (2012)CrossRefGoogle Scholar
  15. 15.
    D.W. Yan, Y.T. Feng, C.R. Wang, Prog. Natl. Sci. Mater. Int. 23, 543 (2013)CrossRefGoogle Scholar
  16. 16.
    C.H. Griffiths, M.S. Walker, P. Goldstein, Mol. Cryst. Liq. Cryst. 33, 149 (1976)CrossRefGoogle Scholar
  17. 17.
    R.F. Ziolo, C.H. Griffiths, J.M. Troup, J. Chem. Soc. Dalton Trans. 11, 2300 (1980)CrossRefGoogle Scholar
  18. 18.
    H.B. Wang, D. Song, J.L. Yang, B. Yu, Y.H. Geng, D.H. Yan, Appl. Phys. Lett. 90, 253510 (2007)CrossRefGoogle Scholar
  19. 19.
    L.Q. Li, Q.X. Tang, H.X. Li, W.P. Hu, J. Phys. Chem. B 112, 10405 (2008)CrossRefGoogle Scholar
  20. 20.
    L.Z. Huang, C.F. Liu, X.L. Qiao, H.K. Tian, Y.H. Geng, D. Yan, Adv. Mater. 23, 3455 (2011)CrossRefGoogle Scholar
  21. 21.
    L.J. Wang, G.J. Liu, F. Zhu, F. Pan, D.H. Yan, Appl. Phys. Lett. 93, 173303 (2008)CrossRefGoogle Scholar
  22. 22.
    T.V. Basova, V.G. Kiselev, I.S. Dubkov, F. Latteyer, S.A. Gromilov, H. Peisert, T. Chassé, J. Phys. Chem. C 117, 7097 (2013)CrossRefGoogle Scholar
  23. 23.
    K. Xiao, Y. Liu, Y. Guo, G. Yu, L. Wan, D. Zhu, Appl. Phys. A 80, 1541 (2005)CrossRefGoogle Scholar
  24. 24.
    A.D. Becke, J. Chem. Phys. 98, 5648 (1993)CrossRefGoogle Scholar
  25. 25.
    C.T. Lee, W.T. Yang, R.G. Parr, Phys. Rev. B 37, 785 (1988)CrossRefGoogle Scholar
  26. 26.
    M.J.T. Frisch, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, B. Mennucci, G.A. Petersson, Gaussian 09, Revision A.01 (Gaussian, Wallingford, 2004)Google Scholar
  27. 27.
    J. Zhang, J. Wang, H.B. Wang, D.H. Yan, Appl. Phys. Lett. 84, 142 (2004)CrossRefGoogle Scholar
  28. 28.
    S. Cherian, C. Donley, D. Mathine, L. LaRussa, W. Xia, N. Armstrong, J. Appl. Phys. 96, 5638 (2004)CrossRefGoogle Scholar
  29. 29.
    Z.N. Bao, A.J. Lovinger, A. Dodabalapur, Adv. Mater. 9, 42 (1997)CrossRefGoogle Scholar
  30. 30.
    I.G. Korodi, D. Lehmann, M. Hietschold, D.R.T. Zahn, Appl. Phys. A 111, 767 (2013)CrossRefGoogle Scholar
  31. 31.
    A.A.A. Darwish, M. Rashad, S.R. Alharbi, Appl. Phys. A 124, 447 (2018)CrossRefGoogle Scholar
  32. 32.
    R. Aroca, A. Thedchanamoorthy, Chem. Mater. 7, 69 (1995)CrossRefGoogle Scholar
  33. 33.
    T. Del Cano, V. Parra, M.L. Rodriguez-Mendez, R.F. Aroca, J.A. De Saja, Appl. Surf. Sci. 246, 327 (2005)CrossRefGoogle Scholar
  34. 34.
    C.A. Jennings, R. Aroca, G.J. Kovacs, C. Hsaio, J. Raman Spectrosc. 27, 867 (1996)CrossRefGoogle Scholar
  35. 35.
    T.V. Basova, V.G. Kiselev, V.A. Plyashkevich, P.B. Cheblakov, F. Latteyer, H. Peisert, T. Chasse, Chem. Phys. 380, 40 (2011)CrossRefGoogle Scholar
  36. 36.
    T.V. Basova, V.G. Kiselev, L.A. Sheludyakova, I.V. Yushina, Thin Solid Films 548, 650 (2013)CrossRefGoogle Scholar
  37. 37.
    T.V. Basova, V.G. Kiselev, F. Latteyer, H. Peisert, T. Chasse, Appl. Surf. Sci. 322, 242 (2014)CrossRefGoogle Scholar
  38. 38.
    D. Wrobel, A. Siejak, P. Siejak, Sol. Energy Mater. Sol. Cells 94, 492 (2010)CrossRefGoogle Scholar
  39. 39.
    R. Aroca, C. Jennings, R.O. Loutfy, A.M. Hor, J. Phys. Chem. 90, 5255 (1986)CrossRefGoogle Scholar
  40. 40.
    T.C. Damen, S.P.S. Porto, B. Tell, Phys. Rev. 142, 570 (1966)CrossRefGoogle Scholar
  41. 41.
    R. Loudon, Adv. Phys. 50, 813 (2001)CrossRefGoogle Scholar
  42. 42.
    D.R.T. Zahn, G.N. Gavrila, G. Salvan, Chem. Rev. 107, 1161 (2007)CrossRefGoogle Scholar
  43. 43.
    F. Latteyer, H. Peisert, U. Aygul, I. Biswas, F. Petraki, T. Basova, A. Vollmer, T. Chassé, J. Phys. Chem. C 115, 11657 (2011)CrossRefGoogle Scholar
  44. 44.
    D.A. Long, The Raman Effect: A Unified Treatment of the Theory of Raman Scattering by Molecules (Wiley, Chichester, 2001)Google Scholar
  45. 45.
    T.V. Basova, B.A. Kolesov, A.G. Gürek, V. Ahsen, Thin Solid Films 385, 246 (2001)CrossRefGoogle Scholar
  46. 46.
    K. Ishi, N. Kobayashi, in Applications of Phthalocyanines. The Porphyrin Handbook, ed. by K.M. Kadish, R. Smith, R. Guilard (Academic Press, San Diego, 1999), p. 1Google Scholar
  47. 47.
    B.M. Hassan, H. Li, N.B. McKeown, J. Mater. Chem. 10, 39 (2000)CrossRefGoogle Scholar
  48. 48.
    D. Atilla, A.G. Gurek, T.V. Basova, V.G. Kiselev, A. Hassan, L.A. Sheludyakova, V. Ahsen, Dyes Pigments 88, 280 (2011)CrossRefGoogle Scholar
  49. 49.
    H.L. Dong, X.L. Fu, J. Liu, Z.R. Wang, W.P. Hu, Adv. Mater. 25, 6158 (2013)CrossRefGoogle Scholar
  50. 50.
    Y.L. Hu, W. Gu, N. Liu, Z.P. Zhu, J.H. Zhang, J. Wang, Phys. Stat. Sol. Rapid Res. Lett. 7, 558 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Nikolaev Institute of Inorganic Chemistry SB RASNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia
  3. 3.Institute of Chemical Kinetics and Combustion SB RASNovosibirskRussia
  4. 4.Materials and Engineering Research InstituteSheffield Hallam UniversitySheffieldUK

Personalised recommendations