Synthesis of Ni:ZnS quantum dots and investigation of their properties

  • Omer Sahin
  • Sabit HorozEmail author


ZnS and Ni:ZnS quantum dots (QDs) were prepared by wet-chemical method at room temperature using 1-thioglycerol as a capping agent. The incident photon to- current efficiency measurement was carried out for Ni:ZnS QDs for the first time in this study, showed that Ni:ZnS QDs can be utilized as sensitizers to improve the performance of solar cells. In addition to the photovoltaic properties; structural, optical and magnetic properties of Ni:ZnS QDs have been investigated by X-ray diffraction (XRD), optical absorption, photoluminescence (PL) and physical property measurement system measurements, respectively. The XRD study showed that ZnS and Ni:ZnS QDs have cubic (zinc blende) structure and the particle size of ZnS QDs doped by Ni (2.70 nm) becomes larger than ZnS QDs (2.69 nm). Optical studies (optical absorption and PL) revealed that the absorption and emission of Ni:ZnS QDs (Eg = 3.92 eV, λ = 316 nm) are red-shifted compare to that of ZnS QDs (Eg = 4 eV, λ = 310 nm). The magnetization–magnetic field (M–H) measurement indicated that unlike ZnS QDs, Ni:ZnS QDs shows ferromagnetic behavior at room temperature. Consequently, the results indicate that Ni:ZnS QDs can be suitable material for photovoltaic and spintronic applications.


  1. 1.
    W. Zhao, Z. Wei, L. Zhang, X. Wu, X. Wang, J. Jiang, Room temperature ferromangetic and optical properties of chromium doped ZnS nanorods prepared by hdyrothermal method. J. Nanomater. 2017, 9378349 (2017)CrossRefGoogle Scholar
  2. 2.
    D. Saikia, J.P. Borah, Investigation of doping induced structural, optical and magnetic properties of Ni-doped ZnS diluted magnetic semiconductors. J. Mater. Sci.: Mater. Electron. 28, 8029–8037 (2017)Google Scholar
  3. 3.
    H.I. Ikeri, A.I. Onyia, P.U. Asogwa, Theoretical investigation of the size effect on energy gap of CdSe, ZnS and GaAs quantum dots using particle in a box model. Chalcogenide Lett. 14, 49–54 (2017)Google Scholar
  4. 4.
    N. Kumbhojkar, V.V. Nikesh, A. Kshirsagar, S. Mahamuni, Photophysical properties of ZnS clusters. J. Appl. Phys. 88, 1321027 (2000)CrossRefGoogle Scholar
  5. 5.
    R.N. Bharvaga, Doped nanocrystalline materials-physics and applications. J. Lumin. 70, 85–94 (1996)CrossRefGoogle Scholar
  6. 6.
    S. Horoz, Q. Dai, F.S. Maloney, B. Yakami, J.M. Pikal, X. Zhang, J. Wang, W. Wang, J. Tang, Absoprtion induced by Mn doping of ZnS for improved sensitized quantum dot-solar cells. Phys. Rev. Appl. 3, 024011 (2015)CrossRefGoogle Scholar
  7. 7.
    R. Murugesan, S. Sivakumar, P. Anandan, M. Haris, J. Mater. Sci.: Mater. Electron. 28, 12432–12439 (2017)Google Scholar
  8. 8.
    S. Ravi, F.W. Shashikanth, Preparation of Mn doped CeO2 nanoparticles with enchanced ferromagnetism. Mater. Chem. Phys. 194, 37–41 (2017)CrossRefGoogle Scholar
  9. 9.
    S.H. Babu, S. Kaleemulla, N.M. Rao, C. Krishnamaorthi, Studies on ferromagnetic and photoluminescence properties of ITO and Cu-doped ITO nanoparticles synthesized by solid state reaction. J. Electron. Mater. 45, 5703–5708 (2016)CrossRefGoogle Scholar
  10. 10.
    S.C. Qu, W.H. Zhou, F.Q. Liu, N.F. Chen, Z.G. Wang, Photoluminescence properties Eu3+-doped ZnS nanocrystals prepared in water/methanol solution. Appl. Phys. Lett. 80, 1478152 (2002)CrossRefGoogle Scholar
  11. 11.
    A.A. Dakhel, M. El-Hillo, Ferromagnetic nanocrystalline Gd-doped ZnO powder synthesized by co-precipitation. J. Appl. Phys. 107, 3448026 (2010)CrossRefGoogle Scholar
  12. 12.
    Z.B. Fang, Y.S. Tan, H.X. Gong, C.M. Zhen, Z.W. He, Y.Y. Wang, Transparent conductive Tb-doped ZnO films prepared by rf magnetron sputtering. 59, 2611–2614 (2005)Google Scholar
  13. 13.
    C.S. Pathak, P.K. Pathak, P. Kumar, M.K. Mandal, Characterization and optical properties of Ni2+ doped ZnS nanoparticles. J. Ovonic Res. 8, 15–20 (2012)Google Scholar
  14. 14.
    B.H. Reddy, G.S. Harish, P.S. Reddy, Synthesis and luminescence properties of Ni doped ZnS nanoparticles. Int. J. Sci. Technol. Eng. 2, 216–220 (2016)Google Scholar
  15. 15.
    S.J. Peatron, C.R. Abernathy, M.E. Overberg, G.T. Thaler, D.P. Norton, N. Theodoropoulan, A.F. Herbard, Y.D. Park, F. Ren, J. Kim, L.A. Boatner, Wide band gap ferromagnetic semiconductors and oxides. J. Appl. Phys. 93, 1–13 (2003)CrossRefGoogle Scholar
  16. 16.
    J.M.D. Coey, A.P. Douvalis, C.P. Fitzgerald, M. Venkatesan, Ferromagnetism in Fe-doped SnO2 thin films. Appl. Phys. Lett. 84, 1332–1334 (2004)CrossRefGoogle Scholar
  17. 17.
    S. Sambasivam, D.P. Joseph, J.G. Lin, C. Venkateswaran, Doping induced magnetism in Co–ZnS nanoparticles. J. Solid State Chem. 182, 2598–2601 (2009)CrossRefGoogle Scholar
  18. 18.
    S. Kumar, C.L. Chen, C.L. Dong, Y.K. Ho, J.F. Lee, T.S. Chan, R. Thangavel, T.K. Chen, B.H. Mok, S.M. Rao, M.K. Wu, Room temperature ferromagnetism in Ni doped ZnS nanoparticles. J. Alloys Compd. 554, 357–362 (2013)CrossRefGoogle Scholar
  19. 19.
    H.Q. Xie, L.J. Tang, J.L. Tang, P. Peng, Magnetic properties of Ni doped ZnS: first principle. J. Magn. Magn. Mater. 377, 239–242 (2015)CrossRefGoogle Scholar
  20. 20.
    S. Horoz, Q. Dai, U. Poudyal, B. Yakami, J.M. Pikal, W. Wang, J. Tang, Controlled synthesis of Eu2+ and Eu3+ doped ZnS quantum dots and their photovoltaic and magnetic properties. AIP Adv. 6, 045119 (2016)CrossRefGoogle Scholar
  21. 21.
    S. Horoz, O. Sahin, Investigations of structural, optical, and photovoltaic properties of Fe-alloyed ZnS quantum dots. J. Mater. Sci.: Mater. Electron. 28, 9559–9565 (2017)Google Scholar
  22. 22.
    H.P. Klong, L.F. Alexander, X-ray Diffraction Procedures for Crystalline and Amorphous Structure. (Wiley, New York, 1954)Google Scholar
  23. 23.
    W. Wu, Z. Wei, W. Zhao, X. Wang, J. Jiang, Optical and magnetic properties of Ni doped ZnS diluted semiconductors synthesized by hydrothermal method. J. Nanomater. 2017, 1603450 (2017)Google Scholar
  24. 24.
    M.F. Malek, M.H. Mamat, N.D. Md Sin, M. Rusop, Effects of Sn dopant on structural and optical properties of ZnO thin film prepared by sol-gel route. Appl. Mech. Mater. 773, 617–623 (2015)CrossRefGoogle Scholar
  25. 25.
    Q. Xiao, C. Xiao, Synthesis and photoluminescence of water soluble Mn2+ doped ZnS quantum dots. Appl. Surf. Sci. 254, 6432–6435 (2008)CrossRefGoogle Scholar
  26. 26.
    P. Yang, M. Lu, D. Xu, D. Yuan, J. Chang, G. Zhou, M. Pan, Strong green luminescence of Ni2+-doped ZnS nanocrystals. Appl. Phys. A 74, 257–259 (2002)CrossRefGoogle Scholar
  27. 27.
    D.A. Reddy, G. Murali, R.P. Vijayalakshmi, B.K. Reddy, B. Sreedhar, Effect of Cr doping on the structural and optical properties of ZnS nanoparticles. Cryst. Res. Technol. 46, 731–736 (2011)CrossRefGoogle Scholar
  28. 28.
    S. Kumar, N.K. Verma, Room temperature magnetism in cobalt-doped ZnS nanoparticles. J. Supercond. Novel Magn. 28, 137–142 (2015)CrossRefGoogle Scholar
  29. 29.
    J.H. Kim, H. Rho, J. Kim, Y.J. Choi, J.G. Park, Raman spectroscopy of ZnS nanostructures. J. Raman Spectrosc. 43, 906–910 (2012)CrossRefGoogle Scholar
  30. 30.
    P. Elavarthi, A.A. Kumar, G. Murali, D.A. Reddy, K.R. Gunasekhar, Room temperature ferromagnetism and white light emissive CdS:Cr nanoparticles synthesized by chemical co-precipitation method. 656, 510–517 (2016)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Chemical Engineering, Faculty of EngineeringSiirt UniversitySiirtTurkey
  2. 2.Department of Electrical and Electronics Engineering, Faculty of EngineeringSiirt UniversitySiirtTurkey

Personalised recommendations