Advertisement

Improvement of energy storage properties in niobate glass–ceramics via the adjustment of glass/ceramic ratios

  • Shuangxi Xue
  • Shi Xiao
  • Jiwei Zhai
Article
  • 73 Downloads

Abstract

Niobate glass–ceramics with varying amounts of glass have been prepared through a melted-quenching-controlled crystallization method. The influence of glass/ceramic ratio on the dielectric properties, energy storage characteristics and charge–discharge behavior of the [(SrO, K2O)–Nb2O5]–[SiO2–Al2O3] (SKN–SA) glass–ceramics was investigated. The microstructure showed that the grain size reduced with increasing aluminosilicate glass concentration. The dielectric properties illustrated that there was an opposite trend between the dielectric constant and breakdown strength with the increase of glass content. Based on these results, an optimal theoretical energy storage density of 6.70 J/cm3 could be obtained in the glass–ceramic sample with 45 mol% glass. For pulsed power capacitors, the discharge speed of the glass–ceramic samples decreased from 8.4 to 5.5 µs and the discharge–charge efficiency increased from 75.7 to 87.7% with the increase of glass content, which provided a new design strategy for pulsed power capacitors.

Notes

Acknowledgements

The authors would like to acknowledge the support from Public Technology Research Project of Zhejiang Province (LGG18E020002) and National Key Fundamental Research Program (2015CB654601).

References

  1. 1.
    Q. Chen, B.J. Chu, X. Zhou, Q.M. Zhang, Appl. Phys. Lett. 91(6), 434 (2007)Google Scholar
  2. 2.
    Z.M. Dang, J.K. Yuan, S.H. Yao, R.J. Liao, Adv. Mater. 25, 6334 (2013)CrossRefGoogle Scholar
  3. 3.
    B. Chu, X. Zhou, K. Ren, B. Neese, M. Lin, Q. Wang, Science 313, 334 (2006)CrossRefGoogle Scholar
  4. 4.
    S. Xiao, S.M. Xiu, B. Shen, J.W. Zhai, J. Electron. Mater. 47(1), 1 (2017)Google Scholar
  5. 5.
    S.H. Liu, J.W. Zhai, J. Mater. Chem. A 3(4), 1511 (2014)CrossRefGoogle Scholar
  6. 6.
    C.T. Cheng, M. Lanagan, J.T. Lin, B. Jones, M.J. Pan, J. Mater. Res. 2, 438 (2005)CrossRefGoogle Scholar
  7. 7.
    M.J. Reece, C.A. Worrell, G.J. Hill, J. Am. Ceram. Soc. 79(1), 17 (2005)CrossRefGoogle Scholar
  8. 8.
    A. Herczog, J. Am. Ceram. Soc. 47(3), 107 (1964)CrossRefGoogle Scholar
  9. 9.
    Y. Zhang, J. Huang, T. Ma, X. Wang, C. Deng, X. Dai, J. Am. Ceram. Soc. 94, 1805 (2011)CrossRefGoogle Scholar
  10. 10.
    Y. Zhang, X.R. Wang, X.Z. Song, T. Ma, Q. Zhang, J. Mater. Sci. Mater. Electron. 23, 2301 (2012)CrossRefGoogle Scholar
  11. 11.
    W.Q. Zhang, S.X. Xue, S.H. Liu, J.W. Wang, B. Shen, J.W. Zhai, J. Alloy. Compd. 617, 740 (2014)CrossRefGoogle Scholar
  12. 12.
    E.P. Gorzkowski, M.J. Pan, B. Bender, C.C.M. Wu, J. Electron. Ceram. 18(3–4), 269 (2007)Google Scholar
  13. 13.
    J.W. Wang, L.J. Tang, B. Shen, J.W. Zhai, J. Mater. Res. 29, 288 (2014)CrossRefGoogle Scholar
  14. 14.
    S.M. Xiu, S. Xiao, S.X. Xue, J.W. Zhai, J. Mater. Sci. Mater. Electron. 27(5), 5324 (2016)CrossRefGoogle Scholar
  15. 15.
    S.X. Xue, J.W. Wang, S.H. Liu, B. Shen, J.W. Zhai, Ceram. Inter. 40, 7495 (2014)CrossRefGoogle Scholar
  16. 16.
    T. Sato, Y. Koike, T. Endo, M. Shimada, J. Mater. Sci. 26, 510 (1991)CrossRefGoogle Scholar
  17. 17.
    F. Peng, R.F. Speyer, W. Hackenberger, J. Mater. Res. 22(7), 1996 (2007)CrossRefGoogle Scholar
  18. 18.
    G.H. Cheng, J. Zheng, C.L. Yuan, C.R. Zhou, X.L. Kang, J.W. Xu, Y. Yang, Mater. Lett. 176, 46 (2016)CrossRefGoogle Scholar
  19. 19.
    Y. Zhou, Q. Zhang, J. Luo, Q. Tang, J. Du, Scr. Mater. 65, 296 (2011)CrossRefGoogle Scholar
  20. 20.
    S.X. Xue, J.W. Zhai, S. Xiao, S.M. Xiu, B. Shen, Mater. Lett. 154, 190 (2017)Google Scholar
  21. 21.
    J. Shyu, C. Chen, Ceram. Int. 29, 447 (2003)CrossRefGoogle Scholar
  22. 22.
    E.K. Müller, B.J. Nicholson, J. Am. Ceram. Soc. 45, 250 (1962)CrossRefGoogle Scholar
  23. 23.
    V. Tomer, E. Manias, C.A. Randall, J. Appl. Phys. 4, 044107 (2011)CrossRefGoogle Scholar
  24. 24.
    S. Xiao, S.M. Xiu, S.X. Xue, J.W. Zhai, J. Mater. Sci. 51(12), 5880 (2016)CrossRefGoogle Scholar
  25. 25.
    S.X. Xue, S.H. Liu, J.W. Zhai, J. Alloy. Compd. 617, 418 (2014)CrossRefGoogle Scholar
  26. 26.
    J.J. Huang, Y. Zhang, T. Mao, H.T. Li, L.W. Zhang, Appl. Phys. Lett. 96, 042902 (2010)CrossRefGoogle Scholar
  27. 27.
    S. Xiao, S.M. Xiu, B. Shen, J.W. Zhai, J. Eur. Ceram. Soc. 36(16), 4071 (2016)CrossRefGoogle Scholar
  28. 28.
    J. Du, B. Jones, M. Lanagan, Mater. Lett. 59, 2821 (2005)CrossRefGoogle Scholar
  29. 29.
    S.X. Xue, S.H. Liu, J.W. Zhai, Appl. Phys. Lett. 106(16), 1065 (2015)Google Scholar
  30. 30.
    H. Tang, H.A. Sodano, Nano Lett. 13(4), 1373 (2013)CrossRefGoogle Scholar
  31. 31.
    S.X. Xue, S. Xiao, J.W. Zhai, J. Mater. Sci. Mater. Electron. 5785, 1 (2017)Google Scholar
  32. 32.
    N.J. Smith, B. Rangarajan, M.T. Lanagan, C.G. Pantano, Mater. Lett. 63, 1245 (2009)CrossRefGoogle Scholar
  33. 33.
    G.H. Chen, J. Zheng, Z.C. Li, C.L. Yuan, C.R. Zhou, J. Mater. Sci. Mater. Electron. 27(8), 8499 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Physics and Electronic EngineeringTaizhou UniversityTaizhouChina
  2. 2.Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Functional Materials Research Laboratory, School of Materials Science & EngineeringTongji UniversityShanghaiChina

Personalised recommendations