Advertisement

Forward and reverse bias current–voltage (I–V) characteristics in the metal–ferroelectric–semiconductor (Au/SrTiO3/n-Si) structures at room temperature

  • A. Buyukbas-Ulusan
  • S. Altındal-Yerişkin
  • A. Tataroğlu
Article
  • 62 Downloads

Abstract

The main electrical parameters of fabricated Au/SrTiO3/n-Si (MFS) structures have been investigated by using various methods. The values of ideality factor (n) and zero-bias barrier height (ΦB0) are calculated from the forward bias current–voltage (IF–VF) data as 0.60, and 0.48 eV from thermionic theory (TE) and Cheung functions, respectively. The value of Rs is also obtained from the Norde function and Cheung functions as 87.83 and 137.57 Ω, respectively. The discrepancy between these results can be attributed to the calculated method and the measured voltage range. Besides, the energy density distribution profile of interface state (Nss) was obtained from the (IF–VF) data by taking into account voltage dependent barrier height (BH), n and without Rs. On the other hand, the possible current conduction mechanism (CCM) are determined by utilizing the In(IF) versus In(VF) and In(IR) versus VR1/2 plots. The double logarithmic IF–VF plot shows three linear regions which are corresponding to low, moderate and high bias voltages with different slopes (m) as 2.40, 1.96 and 1.27 respectively. While the first region space charge limited current (SCLC) is dominated, the other two regions ohmic behavior is dominated. The field-lowering coefficient (β) was also obtained from the slope of In(IR)–V1/2 plot as 4.40 \(\times\) 10−6 eV−1 m1/2 V1/2. This value of β is close to theoretical value of Poole–Frenkel emission (PFE) rather than Schottky emission (SE) mechanism.

Notes

Acknowledgements

This study was supported by Gazi University Scientific Research Project (Project Number: GU-BAP.05/2018-10).

References

  1. 1.
    K. van Benthem, C. Elsässer, R.H. French, ‘Bulk electronic structure of SrTiO3: experiment and theory’. J. Appl. Phys. 90, 6156 (2001)CrossRefGoogle Scholar
  2. 2.
    R.K. Gupta, K. Ghosh, P.K. Kahol, ‘Fabrication and electrical characterization of Au/p-Si/STO/Au contact’. Curr. Appl. Phys. 9, 933–936 (2009)CrossRefGoogle Scholar
  3. 3.
    M.K. Hudait, M. Clavel, Y. Zhu, P.S. Goley, S. Kundu, D. Maurya, S. Priya, ‘Integration of SrTiO3 on crystallographically oriented epitaxial Germanium for Low-Power device applications’. ACS Appl. Mater. Interfaces 7, 5471–5479 (2015)CrossRefGoogle Scholar
  4. 4.
    G. Panomsuwan, O. Takai, N. Saito, ‘Enhanced memory window of Au/BaTiO3/SrTiO3/Si (001) MFIS structure with high c-axis orientation for non-volatile memory applications. Appl Phys A 108, 337–342 (2012)CrossRefGoogle Scholar
  5. 5.
    İ Taşcıoğlu, Ö Tüzün Özmen, H.M. Şağban, E. Yağlıoğlu, Ş. Altındal, ‘Frequency dependent electrical and dielectric properties of Au/P3HT:PCBM:F4-TCNQ/n-Si Schottky Barrier Diode’. J. Electron. Mater. 46, 2379–2386 (2017)CrossRefGoogle Scholar
  6. 6.
    S.M. Sze, Physics of Semiconductor Devices, 2nd edn. (Wiley, New York, 1981), pp. 362–380Google Scholar
  7. 7.
    E.H. Rhoderick, R. H. Williams, Metal Semiconductor Contacts, 2nd edn. (Clarendon Press, Oxford, 1988), pp. 257–267Google Scholar
  8. 8.
    S.R. Forrest, Ultrathin organic films grown by organic molecular beam deposition and related techniques. Chem. Rev. 97, 1793–1896 (1997)CrossRefGoogle Scholar
  9. 9.
    R.T. Tung, Formation of an electric dipole at metal-semiconductor interfaces. Phys. Rev. B 64, 205310 (2001)CrossRefGoogle Scholar
  10. 10.
    S.G. Wang, Y. Zhang, Y.M. Zhang, Y.M. Zhang, Characterization of ion-implanted 4H-SiC Schottky barrier diodes. Chin. Phys. B 19, 017203 (2010)CrossRefGoogle Scholar
  11. 11.
    A. Tataroglu, Comparative study of the electrical properties of Au/n-Si (MS) and Au/Si3N4/n-Si (MIS) Schottky diodes. Chin. Phys. B 22, 068402 (2013)CrossRefGoogle Scholar
  12. 12.
    S. Chand, On the intersecting behaviour of current–voltage characteristics of inhomogeneous Schottky diodes at low temperatures. Semicond. Sci. Technol. 19, 82 (2004)CrossRefGoogle Scholar
  13. 13.
    A.C. Varghese, C.S. Menon, Electrical properties of hybrid phthalocyanines thin films using gold and lead electrodes. Eur. Phys. J. B 47, 485 (2005)CrossRefGoogle Scholar
  14. 14.
    V. Janardhanam, H.K. Lee, K.H. Shim, H.B. Hong, S.H. Lee, K.S. Ahn, C.J. Choi, Temperature dependency and carrier transport mechanisms of Ti/p-type InP Schottky rectifiers. J. Alloys Compd. 504, 146 (2010)CrossRefGoogle Scholar
  15. 15.
    S. Hlali, A. Farji, N. Hizem, L. Militaru, A. Kalboussi, A. Souifi, High temperature and voltage dependent electrical and dielectric properties of TiN/Al2O3/p-Si MIS structure. J. Alloys Compd. 713, 194–203 (2017)CrossRefGoogle Scholar
  16. 16.
    H. Trabelsi, M. Bejar, E. Dhahri, M. Sajieddine, K. Khirouni, P.R. Prezas, B.M.G. Melo, M.A. Valente, M.P.F. Graça, Effect of oxygen vacancies on SrTiO3 electrical properties. J. Alloys Compd. 723, 894–903 (2017)CrossRefGoogle Scholar
  17. 17.
    G.D. Wilk, R.M. Wallace, J.M. Anthony, High-k gate dielectrics: current status and materials properties considerations. J. Appl. Phys. 89, 5243–5275 (2001)CrossRefGoogle Scholar
  18. 18.
    H.G. Çetinkaya, M. Yıldırım, P. Durmuş, Ş Altındal, Correlation between barrier height and ideality factor in identically prepared diodes of Al/Bi4Ti3O12/p-Si (MFS) structure with barrier inhomogeneity. J. Alloys Compd. 721, 750–756 (2017)CrossRefGoogle Scholar
  19. 19.
    A. Tataroğlu, Ş Altındal, The analysis of the series resistance and interface states of MIS Schottky diodes at high temperatures using I–V characteristics. J. Alloys Compd. 484, 405 (2009)CrossRefGoogle Scholar
  20. 20.
    H. Tanrıkulu, A. Tataroğlu, E.E. Tanrıkulu, A.B. Uluşan, Electrical characterization of MIS diode prepared by magnetron sputtering. IJPAP 56, 142–148 (2018)Google Scholar
  21. 21.
    Ö Vural, N. Yıldırım, Ş Altındal, A. Türüt, Current–voltage characteristics of Al/Rhodamine-101/n-GaAs and Cu/Rhodamine-101/n-GaAs rectifier contacts. Synt. Metal. 157, 679–683 (2007)CrossRefGoogle Scholar
  22. 22.
    Ş Altındal, İ Yücedağ, A. Tataroğlu, Analysis of surface states and series resistance in Au/n-Si Schottky diodes with insulator layer using current-voltage and admittance—voltage characteristics. Vacuum 84, 363–368 (2010)CrossRefGoogle Scholar
  23. 23.
    A. Tataroğlu, Ş Altındal, Characterization of current–voltage (I–V) and capacitance–voltage– frequency (C–V–f) features of Al/SiO2/p-Si (MIS) Schottky diodes. Microelectron. Eng. 83, 582–588 (2006)CrossRefGoogle Scholar
  24. 24.
    A. Büyükbaş Uluşan, A. Tataroğlu, Y. Azizian-Kalandaragh, Ş Altındal, On the conduction mechanisms of Au/(Cu2O–CuO–PVA)/n-Si (MPS) Schottky barrier diodes (SBDs) using current–voltage–temperature (I–V–T) characteristics. J. Mater. Sci. 29, 159–170 (2018)Google Scholar
  25. 25.
    E.H. Nicollian, J.R. Brews, MOS Physics and Technology, 2nd edn. (Wiley, New York, 1982), pp. 71–150Google Scholar
  26. 26.
    K.E. Bohlin, Generalized Norde plot including determination of the ideality factor. J. Appl. Phys. 60, 1223 (1986)CrossRefGoogle Scholar
  27. 27.
    S.K. Cheung, N.W. Cheung, Extraction of Schottky diode parameters from forward current-voltage characteristics. Appl. Phys. Lett. 49, 85 (1986)CrossRefGoogle Scholar
  28. 28.
    S.B.K. Aydin, D.E. Yıldız, H.K. Çavuş, R. Şahingöz, ALD TiO2 thin film as dielectric for Al/p-Si Schottky diode. Bull. Mater. Sci. 37, 1563–1568 (2014)CrossRefGoogle Scholar
  29. 29.
    A. Tataroglu, A.A. Hendi, R.H. Alorainy, F. Yakuphanoglu A new aluminum iron oxide Schottky photodiode designed via sol–gel coating method. Chin. Phys. B 23, 057504 (2014)CrossRefGoogle Scholar
  30. 30.
    S. Alialy, D.E. Yıldız, Ş Altındal, Study on the reverse bias carrier transport mechanism in Au/TiO2/n-4H-SiC structure. J. Nano. Opto. 11, 626–630 (2016)CrossRefGoogle Scholar
  31. 31.
    V. Rajagopal Reddy, V. Manjunath, V. Janardhanam, Y.-H. Kıl, C.-J. Cho, Electrical properties and current transport mechanisms of the Au/n-GaN Schottky structure with solution-processed high-k BaTiO3 interlayer. J. Electron. Mater. 43, 3499 (2014)CrossRefGoogle Scholar
  32. 32.
    K. Sreenu, C. Venkata Prasad, V. Rajagopal, Reddy, Barrier parameters and current transport characteristics of Ti/p-InP schottky junction modified using orange G (OG) Organic Interlayer. J. Electron. Mater. 46, 5746 (2017)CrossRefGoogle Scholar
  33. 33.
    A.C. Varghese, C.S. Menon, Electrical properties of hybrid phthalocyanines thin films using gold and lead electrodes. Eur. Phys. J. 47, 485–489 (2005)CrossRefGoogle Scholar
  34. 34.
    A. Ashok Kumar, V. Rajagopal Reddy, V. Janardhanam, H.D. Yang, H.J. Yun, C.J. Choi, Electrical properties of Pt/n-type Ge Schottky contact with PEDOT:PSS interlayer. J. Alloys Compd. 549, 18–21 (2013)CrossRefGoogle Scholar
  35. 35.
    V. Janardhanam, Y.K. Park, K.S. Ahn, C.J. Choi, Carrier transport mechanism of Se/n-type Si Schottky diodes. J. Alloys Compd. 534, 37–41 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • A. Buyukbas-Ulusan
    • 1
  • S. Altındal-Yerişkin
    • 2
  • A. Tataroğlu
    • 1
  1. 1.Physics Department, Faculty of SciencesGazi UniversityAnkaraTurkey
  2. 2.Department of Chemical Engineering, Faculty of EngineeringGazi UniversityAnkaraTurkey

Personalised recommendations