Synthesis, characterization and optical properties of multi-walled carbon nanotubes/aniline-o-anthranilic acid copolymer nanocomposite thin films

  • M. H. Abdel-AzizEmail author
  • A. F. Al-Hossainy
  • A. Ibrahim
  • S. A. Abd El-Maksoud
  • M. Sh. Zoromba
  • M. Bassyouni
  • S. M. S. Abdel-Hamid
  • A. A. I. Abd-Elmageed
  • I. A. Elsayed
  • O. M. Alqahtani


Carboxylic functionalized multi-walled carbon nanotubes/aniline-anthranilic acid copolymer composites with different amounts of MWCNTs were produced by the method of in situ oxidative polymerization. Thin films of the composites were fabricated by thermal evaporation method within the thickness range of 150–200 nm. The structural characteristics of the investigated composites were studied by various techniques. SEM images showed that the resulting nanoparticles have irregular entangled like-plate layers with an average diameter range of 40–60 nm. Indirect optical band gaps Eg1 and Eg2 were calculated depending on the energy range of composite thin films. Electronic parameters of MWCNTs/PANAA thin film, including diode ideality factor (n), series resistance (Rs) and shunt resistance (Rsh) were determined from the I–V characteristic in the dark under different temperatures. The values of n, Rs, and Rsh were found to be 3.80, 5.6 × 104 (Ω), and 1.64 × 106 (Ω), respectively at room temperature.


  1. 1.
    E. Kymakis, G.A. Amaratunga, Carbon nanotubes as electron acceptors in polymeric photovoltaics. Rev. Adv. Mater. Sci. 10, 300–305 (2005)Google Scholar
  2. 2.
    R.L. Patyk, B.S. Lomba, A.F. Nogueira, C.A. Furtado, A.P. Santos, R.M.Q. Mello, L. Micaroni, I.A. Hümmelgen, Carbon nanotube–polybithiophene photovoltaic devices with high open-circuit voltage. Physica Status Solidi (RRL)-Rapid Res. Lett. 1, R43 – R45 (2007)CrossRefGoogle Scholar
  3. 3.
    M. Sh. Zoromba, M.H. Abdel-Aziz, Ecofriendly method to synthesize poly (ο-aminophenol) based on solid State polymerization and fabrication of nanostructured semiconductor thin film. Polymer 120, 20–29 (2017)CrossRefGoogle Scholar
  4. 4.
    M. Pandey, S. Sadakata, S. Nagamatsu, S.S. Pandey, S. Hayase, W. Takashima, Layer-by-layer coating of oriented conjugated polymer films towards anisotropic electronics. Synth. Met. 227, 29–36 (2017)CrossRefGoogle Scholar
  5. 5.
    H. Hongchao, C. Yingde, Synthesis and conductive properties of a novel azobenzene-based conjugated polymer. Synth. Met. 205, 106–111 (2015)CrossRefGoogle Scholar
  6. 6.
    M. Sh Zoromba, M.I.M. Ismail, M. Bassyouni, M.H. Abdel-Aziz, N. Salah, A. Alshahrie, A. Memic, Fabrication and characterization of poly (aniline-co-o-anthranilic acid)/magnetite nanocomposites and their application in wastewater treatment. Colloids Surf. A 520, 121–130 (2017)CrossRefGoogle Scholar
  7. 7.
    X. Wang, Q. Su, Y. Li, C. Cheng, Y. Xia, L. He, H. Li, G. Shu, F. Wang, Synthesis and photovoltaic properties of donor–acceptor conjugated polymers based on 4, 7-dithienyl-2, 1, 3-benzothiadiazole functionalized silole. Synth. Met. 220, 433–439 (2016)CrossRefGoogle Scholar
  8. 8.
    M. Sh. Zoromba, A.A.M. Belal, A.E.M. Ali, F.M. Helaly, A.S. Badran, A.A. Abd El-Hakim, Preparation and characterization of some NR and SBR formulations containing different modified kaolinite. Polym-Plast Technol Eng 46, 1–7 (2007)CrossRefGoogle Scholar
  9. 9.
    M. Sh. Zoromba, S. Alghool, S.M.S. Abdel-Hamid, M. Bassyouni, M.H. Abdel-Aziz, Polymerization of aniline derivatives by K2Cr2O7 and production of Cr2O3 nanoparticles. Polym. Adv. Technol. 28, 842–848 (2017)CrossRefGoogle Scholar
  10. 10.
    N.M. Hosny, N. Nowesser, A.S. Al-Hussaini, M. Sh. Zoromba, Doped copolymer of polyanthranilic acid and o-aminophenol (AA-co-OAP): synthesis, spectral characterization and the use of the doped copolymer as precursor of α-Fe2O3 nanoparticles. J. Mol. Struct. 1106, 479–484 (2016)CrossRefGoogle Scholar
  11. 11.
    S. Guenes, H. Neugebauer, N.S. Sariciftci, Conjugated polymer-based organic solar cells. Chem. Rev. 107, 1324–1338 (2007)CrossRefGoogle Scholar
  12. 12.
    M.H. Abdel-Aziz, I. Nirdosh, G.H. Sedahmed, Liquid–solid mass and heat transfer behavior of a concentric tube airlift reactor. Int. J. Heat Mass Transf. 58, 735–739 (2013)CrossRefGoogle Scholar
  13. 13.
    G.H. Sedahmed, Y.A. El-Taweel, A.H. Konsowa, M.H. Abdel-Aziz, Mass transfer intensification in an annular electrochemical reactor by an inert fixed bed under various hydrodynamic conditions. Chem. Eng. Process. 50, 1122–1127 (2011)CrossRefGoogle Scholar
  14. 14.
    B. Dörling, S. Sandoval, P. Kankla, A. Fuertes, G. Tobias, M. Campoy-Quiles, Exploring different doping mechanisms in thermoelectric polymer/carbon nanotube composites. Synth. Met. 225, 70–75 (2017)CrossRefGoogle Scholar
  15. 15.
    L.-B. Kong, J. Zhang, J.-J. An, Y.-C. Luo, L. Kang, MWNTs/PANI composite materials prepared by in-situ chemical oxidative polymerization for supercapacitor electrode. J. Mater. Sci. 43, 3664–3669 (2008)CrossRefGoogle Scholar
  16. 16.
    M. Bassyouni, S.A. Gutub, U. Javaid, M. Awais, S. Rehman, S.M.-S. Abdel Hamid, M.H. Abdel-Aziz, A. Abouel-Kasem, H. Shafeek, Assessment and analysis of wind power resource using weibull parameters. Energy Explor. Exploit. 33, 105–122 (2015)CrossRefGoogle Scholar
  17. 17.
    N. Iqbal, S. Sagar, M.B. Khan, M.I. Bassyouni, Z.M. Khan, Aluminum silicate fibers impregnateacrylonitrile butadiene rubber composites: ablation, thermal transport/stability, and mechanical inspection. J. Appl. Polym. Sci. 130, 4392–4400 (2013)CrossRefGoogle Scholar
  18. 18.
    N. Wang, Y. Wang, Z. Yu, G. Li, In situ preparation of reinforced polyimide nanocomposites with the noncovalently dispersed and matrix compatible MWCNTs. Compos. A 78, 341–349 (2015)CrossRefGoogle Scholar
  19. 19.
    P. Jimenez, W.K. Maser, P. Castell, M.T. Martinez, A.M. Benito, Nanofibrilar polyaniline: direct route to carbon nanotube water dispersions of high concentration. Macromol. Rapid Commun. 30, 418–422 (2009)CrossRefGoogle Scholar
  20. 20.
    A. Ibrahim, A.F. Al-Hossainy, Thickness dependence of structural and optical properties of novel 2-((1,1-bis(diphenylphosphino)-2-phenylpropan-2-yl)-chromium tetracarbonyl-amino)-3-phenyl propanoic acid copper (II) (DPP-Cr- Palan-Cu) nanocrystalline thin film. Synth. Met. 209, 389–398 (2015)CrossRefGoogle Scholar
  21. 21.
    W. Feng, A. Fujii, S. Lee, H. Wu, K. Yoshino, Broad spectral sensitization of organic photovoltaic heterojunction device by perylene and C6. J. Appl. Phys. 88, 7120–7123 (2000)CrossRefGoogle Scholar
  22. 22.
    A.A. Al-Ghamdi, F. El-Tantawy, New electromagnetic wave shielding effectiveness at microwave frequency of polyvinyl chloride reinforced graphite/copper nanoparticles. Compos. A 41, 1693–1701 (2010)CrossRefGoogle Scholar
  23. 23.
    P. Peumans, A. Yakimov, S.R. Forrest, Small molecular weight organic thin-film photodetectors and solar cells. J. Appl. Phys. 93, 3693–3723 (2003)CrossRefGoogle Scholar
  24. 24.
    S.R. Forrest, The path to ubiquitous and low-cost organic electronic appliances on plastic. Nature 428, 911–918 (2004)CrossRefGoogle Scholar
  25. 25.
    S.E. Shasheen, C.J. Brabec, N.S. Sariciftci, F. Padinger, T. Fromherz, J.C. Hummelen, 2.5% efficient organic plastic solar cells. Appl. Phys. Lett. 78, 841–843 (2001)CrossRefGoogle Scholar
  26. 26.
    T. Martens, T. Munters, L. Goris, J. D’Haen, K. Schoupeduen, M. D’Olieslaeger, L. Lusten, D. Vanderzende, W. Greens, J. Poortmans, L. De Schepper, J.V. Mance, Nanostructured organic pn junctions towards 3D photovoltaics. Appl. Phys. A 79, 27–30 (2004)CrossRefGoogle Scholar
  27. 27.
    S. Tolansky, Multiple-Beam Interference Microscopy of Metals (Academic Press, London, 1970), p. 55Google Scholar
  28. 28.
    I.M. Awad, F.S. Hassan, A.E. Mohamed, A.F. Al-Hossainy, Diphosphine compounds: part I. Novel biologically active 1,1′bis-AND/OR 1,2-cis-(diphenylphosphino-) ethene and their complexes [M (CO) n {Ph2P (CHn) nPPh2}] & [Cu (Cl)2 {Ph2P (CHn) nPPh2}],(M = W, Mo, Crn= 1, 2… n). Phosphorus Sulfur Silicon 179, 1251–1266 (2004).CrossRefGoogle Scholar
  29. 29.
    F.S. Hassan, A.F. Al-Hossainy, A.E. Mohamed, D. Compounds, Part III: UV/visible spectroscopy and novel routes to functionalized diphosphine-M (CO) 6 complexes (M = W, Mo, or Cr). Phosphorus Sulfur Silicon, 184, 2996–3022 (2009)CrossRefGoogle Scholar
  30. 30.
    N. Hosny, M. Sh. Zoromba, G. Samir, S. Alghool, Synthesis, structural and optical properties of Eskolaite nanoparticles derived from Cr doped polyanthranilic acid (CrPANA). J. Mol. Struct. 1122, 117–122 (2016)CrossRefGoogle Scholar
  31. 31.
    N.A. Anaan, E.M. Saad, S.M. Hassan, I.S. Butler, S.I. Mostafa, Preparation, characterization and pH-metric measurements of 4-hydroxysalicylidenechitosan Schiff-base complexes of Fe(III), Co(II), Ni(II), Cu(II), Zn(II), Ru(III), Rh(III), Pd(II) and Au(III). Carbohydr. Res. 346, 775–793 (2011)CrossRefGoogle Scholar
  32. 32.
    A.F. Al-Hossainy, A. Ibrahim, Synthesis, structural and optical properties of novel3-(3,5-dimethyl-1Hpyrazol-1-yl)-1-(diphenylphosphino)-2-((diphenylphos-phino)methyl)-3-methyl butanone-1,2-diphenylethane-1,2-diaminetungsten dicarbonyl (PyrPMB-W) nanostructure thin film. Opt. Mater. 46, 131–140 (2015)CrossRefGoogle Scholar
  33. 33.
    S. El-Sayed, B. Jean, Synthesis, structural characterization and anticancer activity of some new complexes of 6-amino-4-hydroxy-2-thiopyrimidine. J. Mol. Struct. 1028, 208–214 (2012)CrossRefGoogle Scholar
  34. 34.
    K.S. Akamatsu, M. Fujii, T. Tsuruoka, S. Nakano, T. Murashima, H. Nawafune, Mechanistic study on microstructural tuning of metal nanoparticle/polymer composite thin layers: hydrogenation and decomposition of polyimide matrices catalyzed by embedded nickel nanoparticles. J. Phys. Chem. C 116, 17947–17954 (2012)CrossRefGoogle Scholar
  35. 35.
    J.M.D. Coey, A.H. Morrish, G.A. Sawatzky, A Mossbauer study of conduction in magnetite, J. de Physique 32, C1.271–C1.273 (1971)Google Scholar
  36. 36.
    A.F. Al-Hossainy, Synthesis, spectral, thermal, optical dispersion and dielectric properties of nanocrystalline dimer complex (PEPyr–diCd) thin films as novel organic semiconductor. Bull. Mater. Sci. 39, 209–222 (2016)CrossRefGoogle Scholar
  37. 37.
    O.A. El-Gammal, A.F. Al-Hossainy, S.A. El-Brashy, Spectroscopic, DFT, optical band gap, powder X-ray diffraction and bleomycin-dependant DNA studies of Co (II), Ni (II) and Cu (II) complexes derived from macrocyclic Schiff base. J. Mol. Struct. 1165, 177–195 (2018)CrossRefGoogle Scholar
  38. 38.
    M.S. Zoromba, A. Al-Hossainy, M. Abdel-Aziz, Conductive thin films based on poly (aniline-co-o-anthranilic acid)/magnetite nanocomposite for photovoltaic applications. Synth. Met. 231, 34–43 (2017)CrossRefGoogle Scholar
  39. 39.
    A.M. Badr, A.A. El-Amin, A.F. Al-Hossainy, Elucidation of charge transport and optical parameters in the newly 1CR-dppm organic crystalline semiconductors. J. Phys. Chem. C 112, 14188–14195 (2008)CrossRefGoogle Scholar
  40. 40.
    A.M. Badr, A.A. EL-Amin, A.F. Al-Hossainy, Synthesis and optical properties for crystals of a novel organic semiconductor [Ni(Cl)2{(Ph2P)2CHC(R1R2)NHNH2}]. Eur Phys. J B 53, 439–448 (2006)CrossRefGoogle Scholar
  41. 41.
    S.H. Gee, Y.K. Hong, D.W. Erickson, M.H. Park, Synthesis and aging effect of spherical magnetite (Fe3O4) nanoparticles for biosensor applications. J. Appl. Phys. 93, 7560–7562 (2003)CrossRefGoogle Scholar
  42. 42.
    M. Fox, O.M. Ser, Condens. Matter Phys. 64, 76–78 (2001)Google Scholar
  43. 43.
    G.B. Sakr, I.S. Yahia, M. Fadel, S.S. Fouad, N. Romcevic, Optical spectroscopy, optical conductivity, dielectric properties and new methods for determining the gap states of CuSe thin films. J. Alloys Compd. 507, 557–562 (2010)CrossRefGoogle Scholar
  44. 44.
    M.Y. Han, H. Huang, C.H. Chew, L.M. Gan, X.J. Zhang, W. Ji, Large nonlinear absorption in coated Ag2S/CdS nanoparticles by inverse microemulsion. J. Phys. Chem. B 102, 1884–1887 (1998)CrossRefGoogle Scholar
  45. 45.
    S. Aydogan, M. Saglam, A. T¨urut, On the some electrical properties of the non-ideal PPy/p-Si/Al structure. Polymer 46, 10982–10988 (2005)CrossRefGoogle Scholar
  46. 46.
    F. Yakuphanoglu, M. Sekerci, O.F. Ozturk, The determination of the optical constants of Cu(II) compound having 1-chloro-2,3-o-cyclohexylidinepropane thin film. Opt. Commun. 239, 275–280 (2004)CrossRefGoogle Scholar
  47. 47.
    S.K. Cheung, N.W. Cheung, Extraction of Schottky diode parameters from forward current-voltage characteristics. Appl. Phys. Lett. 49, 85–87 (1986)CrossRefGoogle Scholar
  48. 48.
    S. Angappane, N. Rajeev Kimi, T.S. Natarajan, G. Rangarajan, B. Wessling, Pani-PMMA lend/metal Schottly barriers. Thin Solid Films 417, 202–205 (2002)CrossRefGoogle Scholar
  49. 49.
    A.S. Darwish, A.S. Riad, H.S. Soliman, Electrical conductivity and the effect of temperature on photoconduction of n-ZnSe/p-Si rectifying heterojunction cells. Semicond. Sci. Technol. 11, 96 (1995)CrossRefGoogle Scholar
  50. 50.
    M.M. El-Nahass, K.F. Abd-El-Rahman, A.A.A. Darwish, Fabrication and electrical characterization of p-NiPc/n-Si heterojunction. Microelectron. J. 38, 91–95 (2007)CrossRefGoogle Scholar
  51. 51.
    A.K. Mukherjee, R. Menon, Role of mesoscopic morphology in charge transport of doped polyaniline. Pramana 58, 233–239 (2002)CrossRefGoogle Scholar
  52. 52.
    A.F. Al-Hossainy, H.K. Thabet, M. Sh. Zoromba, A. Ibrahim, Facile synthesis and fabrication of a poly (ortho-anthranilic acid) emeraldine salt thin film for solar cell applications. New J. Chem. 42, 10386–10395 (2018)CrossRefGoogle Scholar
  53. 53.
    F. Yakuphanoglu, E. Basaran, B. Şenkal, E. Sezer, Electrical and optical properties of an organic semiconductor based on polyaniline prepared by emulsion polymerization and fabrication of Ag/polyaniline/n-Si Schottky diode. J. Phys. Chem. B 110, 16908–16913 (2006)CrossRefGoogle Scholar
  54. 54.
    T. Kirchartz, F. Deledalle, P.S. Tuladhar, J.R. Durrant, J. Nelson, On the differences between dark and light ideality factor in polymer: fullerene solar cells. J. Phys. Chem. Lett. 4, 2371–2376 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • M. H. Abdel-Aziz
    • 1
    • 2
    Email author
  • A. F. Al-Hossainy
    • 3
    • 4
  • A. Ibrahim
    • 5
  • S. A. Abd El-Maksoud
    • 6
  • M. Sh. Zoromba
    • 1
    • 6
  • M. Bassyouni
    • 7
  • S. M. S. Abdel-Hamid
    • 8
  • A. A. I. Abd-Elmageed
    • 9
  • I. A. Elsayed
    • 10
    • 11
  • O. M. Alqahtani
    • 11
  1. 1.Chemical and Materials Engineering DepartmentKing Abdul-Aziz UniversityRabighKingdom of Saudi Arabia
  2. 2.Chemical Engineering Department, Faculty of EngineeringAlexandria UniversityAlexandriaEgypt
  3. 3.Chemistry Department, Faculty of Science - New ValleyAssiut UniversityAssiutEgypt
  4. 4.Chemistry Department, Faculty of ScienceNorthern Border UniversityArarKingdom of Saudi Arabia
  5. 5.Physics Department, Faculty of ScienceTanta UniversityTantaEgypt
  6. 6.Chemistry Department, Faculty of SciencePort Said UniversityPort SaidEgypt
  7. 7.Department of Chemical Engineering, Faculty of EngineeringPort Said UniversityPort SaidEgypt
  8. 8.Department of Chemical EngineeringThe Egyptian Academy for Engineering and Advanced Technology, Ministry of Military ProductionCairoEgypt
  9. 9.Physics Department, Faculty of Science – New ValleyAssiut UniversityAssiutEgypt
  10. 10.Deptartment of Physics, Faculty of ScienceDamietta UniversityNew DamiettaEgypt
  11. 11.Physics Department, Faculty of Science and HumanitariansPrince Sattam Bin Abdulaziz UniversityAlkharjKingdom of Saudi Arabia

Personalised recommendations