Advertisement

Detection of H2O2 by Fe3O4/CdTe magnetic/fluorescent nanocomposites

  • Neha Saini
  • Saloni Goyal
  • Chetna Narula
  • R. P. Chauhan
Article
  • 53 Downloads

Abstract

In this paper, the synthesis of Fe3O4/CdTe nanocomposite has been reported and their sensing response to H2O2 is also discussed. Firstly, ethylenediaminetetraacetic acid capped Fe3O4 nanoparticles were synthesized followed by chemical conjugation with triethanolamine capped CdTe nanoparticles. The obtained Fe3O4/CdTe nanocomposite were characterized with X-ray diffraction, Fourier transformed infrared spectroscopy, scanning electron microscopy, UV–Vis spectroscopy and fluorescence spectroscopy. The Fe3O4/CdTe nanocomposites were found with excellent fluorescence and magnetic properties favorable for detection of H2O2. The fluorescence emission intensity decreased with increase in concentration of H2O2. The Fe3O4/CdTe nanocomposite showed fluorescence enhancement compared to CdTe nanoparticles.

References

  1. 1.
    A.L. Rogach, Mater. Sci. Eng. B 69–70, 435–440 (2000)CrossRefGoogle Scholar
  2. 2.
    R. Osovsky, V. Kloper, J.K. Olesiak, A. Sashchiuk, E. Lifshitz, J. Phys. Chem. C 111(29), 10841–10847 (2007)CrossRefGoogle Scholar
  3. 3.
    H.B. Bu, H. Kikunaga, K. Shimura, K. Takahasi, T. Taniguchi, D. Ki, Phys. Chem. Chem. Phys. 15, 2903 (2013)CrossRefGoogle Scholar
  4. 4.
    Z. Tang, N.A. Kotov, M. Giersig, Science 297, 237–240 (2002)CrossRefGoogle Scholar
  5. 5.
    Z. Lin, S. Cui, H. Zhang, Q. Chez, B. Yang, X.J. Zhang, Q. Jin, Anal. Biochem. 319(2), 239–243 (2003)CrossRefGoogle Scholar
  6. 6.
    S. Mahdavi, H. Khanmohammadi, M. Masteri-Farahani, J. Mater. Sci.: Mater. Electron. 29(8), 6254–6259 (2018)Google Scholar
  7. 7.
    M. Saruyama, Y.G. So, K. Kimoto, S. Taguchi, Y. Kanemitsu, T. Teranishi, J. Am. Chem. Soc. 133, 17598–17601 (2011)CrossRefGoogle Scholar
  8. 8.
    M. Isshiki, J. Wang, Springer Hand Book of Electronic and Photonic Materials (Springer, Cham, 2017), pp. 853–863Google Scholar
  9. 9.
    C. Narula, I. Kaur, N. Kaur, J. Mater. Sci.: Mater. Electron. 26(2), 791–800 (2015)Google Scholar
  10. 10.
    A. Hosseini, P. Kar, L.H. Hsien, B.D. Wiltshire, A. Mohammodpour, S. Farsinezhad, M. Benlamri, Y. Zhang, C. Ercelebi, K. Shankar, J. Nanosci. Nanotechnol. 17, 5119–5123 (2017)CrossRefGoogle Scholar
  11. 11.
    D. Jin, M.H. Seo, B.T. Huy, Q.T. Pham, M.L. Conte, D. Thangadurai, Y.I. Lee, Biosens. Bioelectron. 77, 359–365 (2016)CrossRefGoogle Scholar
  12. 12.
    Y. Liu, W. Chen, A.G. Joly, Y. Wang, C. Pope, Y. Zhang, J.O. Bovin, P. Sherwood, J. Phys. Chem. B 110, 16992–17000 (2006)CrossRefGoogle Scholar
  13. 13.
    N. Mntungwa, V.S.R. Pullabhotla, N. Revaprasadu, Colloids Surf. B 101, 450–456 (2013)CrossRefGoogle Scholar
  14. 14.
    L. Etgar, E. Lifshitz, R. Tanneenbaum, J. Phys. Chem. C 111, 6238–6244 (2007)CrossRefGoogle Scholar
  15. 15.
    X. Zhang, H. Wang, C. Yang, D. Du, Y. Lin, Biosens. Bioelectron. 41, 669–674 (2013)CrossRefGoogle Scholar
  16. 16.
    M.I. Majeed, Q. Lu, W. Yan, Z. Li, I. Hussain, M.N. Tahir, W. Tremel, B. Tan, J. Mater. Chem. B 1, 2874–2884 (2013)CrossRefGoogle Scholar
  17. 17.
    O. Veiseh, J. Gunn, M. Zhang, Adv. Drug Deliv. Rev. 62, 284–304 (2010)CrossRefGoogle Scholar
  18. 18.
    Y. Yi, Y. Zhang, Y. Wang, L. Shen, M. Jia, Y. Huang, Z. Hou, G. Zhuang, et al. Nanoscale Res. Lett. 9, 27 (2014)CrossRefGoogle Scholar
  19. 19.
    J. Guo, W. Yang, C. Wang, J. He, J. Chen, Chem. Mater. 18, 5554 (2006)CrossRefGoogle Scholar
  20. 20.
    J.M. Shen, W.J. Tang, X.L. Zhang, T. Chen, H.X. Zhang, Carbohydr. Polym. 88(1), 239–249 (2012)CrossRefGoogle Scholar
  21. 21.
    P. Sun, H. Zhang, C. Liu, J. Fang, M. Wang, J. Chen, J. Zhang, C. Mao, S. Xu, Langmuir 26(2), 1278–1284 (2010)CrossRefGoogle Scholar
  22. 22.
    G. Wanga, X. Su, S. Yang, Y. Jia, D. Li, J. Lumin. 132, 2505–2511 (2012)CrossRefGoogle Scholar
  23. 23.
    N.E. Azmi, N.I. Ramli, J.A. Abdullah, M.A. Hamid, H.A. Saidek, S. Rahman, N. Ariffin, N.A. Yusof, Biosensor. Bioelectron. 67, 129–133 (2015)CrossRefGoogle Scholar
  24. 24.
    Z. Wang, Q. Xu, H.Q. Wang, Q. Yang, J.H. Yu, Y.D. Zhao, Sens. Actuators B 138(1), 278–282 (2009)CrossRefGoogle Scholar
  25. 25.
    W. Luo, M.E. Abbas, L.H. Zhu, K.J. Deng, H.Q. Tang, Anal. Chim. Acta 629, 1–5 (2008)CrossRefGoogle Scholar
  26. 26.
    W. Song, W. Ma, J. Ma, C. Chen, J. Zhao, Y. Huang, Y. Xu, Environ. Sci. Technol. 39, 3121–3127 (2005)CrossRefGoogle Scholar
  27. 27.
    W. Song, M. Cheng, J. Ma, W. Ma, C. Chen, J. Zhao, Environ. Sci. Technol. 40, 4782–4787 (2006)CrossRefGoogle Scholar
  28. 28.
    Y. Gao, G. Wang, H. Huang, J. Hu, S. Mazhar Shah, X. Su, Talanta 85, 1075–1080 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Neha Saini
    • 1
  • Saloni Goyal
    • 1
  • Chetna Narula
    • 2
  • R. P. Chauhan
    • 2
  1. 1.School of Material Science and TechnologyNational Institute of TechnologyKurukshetraIndia
  2. 2.Department of PhysicsNational Institute of TechnologyKurukshetraIndia

Personalised recommendations