A facile synthetic route of nitrogen-doped graphite derived from chitosan for modifying LiFePO4 cathode

  • XiaoLong Xu
  • ZhenDong Hao
  • Hao WangEmail author
  • Yizhu XieEmail author
  • JingBing Liu
  • Hui Yan


Nitrogen-doped carbon has been proved to be able to improve the cathode performance of lithium ion batteries (LIBs). As a cathode material, LiFePO4 (LFP) has been widely used for LIBs. However, it needs higher quantity of conductive carbons to enhance its electrochemical performances due to the low ion diffusion coefficient and poor electronic conductivity. Herein, we demonstrate a one-step and facile synthetic route of nitrogen-doped graphite carbon (NGC) for coating the LFP particles. It derives from the chitosan precursor by freeze drying technology and annealing at 600–800 °C. Raman spectroscopy and high-resolution transmission electron microscopy indicate the coating layer is the graphite carbon with a single layer nature. X-ray photoelectron spectroscopy test proves the existence of C–N or C=N (285.2 eV) bonding in the graphite carbon. After coating, the LFP@NGC cathode achieves a specific capacity of ∼ 155.5 mAh g−1 with Coulombic efficiency ∼ 97% at 0.1 C. The cell has a capacity of 63.2 mAh g−1 at 5 C after 100 cycles with Coulombic efficiency and capacity retention ratio of ∼ 100%. This work offers a new and facile route to fabricate NGC for the energy storage.



This work is supported by the Scientific and Technological Development Project of the Beijing Education Committee (No. KZ201710005009), The Importation and Development of High-Caliber Talents Project of Beijing Municipal Institutions (CIT&TCD 201504019).


  1. 1.
    L.F. Shen, X.G. Zhang, E. Uchaker, C.Z. Yuan, G.Z. Cao, Adv. Energy Mater. 2, 691 (2012)CrossRefGoogle Scholar
  2. 2.
    X.L. Xu, C.Y. Qi, Z.D. Hao, H. Wang, J.T. Jiu, J.B. Liu, H. Yan, K. Suganuma, Nano-Micro Lett. 10, 1 (2018)CrossRefGoogle Scholar
  3. 3.
    X.L. Xu, S.X. Deng, H. Wang, J.B. Liu, H. Yan, Nano-Micro Lett. 9, 22 (2017)CrossRefGoogle Scholar
  4. 4.
    A.K. Padhi, K. Nanjundaswamy, J. Goodenough, J. Electrochem. Soc. 144, 1188 (1997)CrossRefGoogle Scholar
  5. 5.
    R. Saroha, A.K. Panwar, Y. Sharma, Ceram. Int. 43, 5734 (2017)CrossRefGoogle Scholar
  6. 6.
    J. Lu, Z.H. Chen, Z.F. Ma, F. Pan, L.A. Curtiss, K. Amine, Nat. Nanotechnol. 11, 1031 (2016)CrossRefGoogle Scholar
  7. 7.
    P.M. Pratheeksha, E.H. Mohan, B.V. Sarada, M. Ramakrishna, K. Hembram, P.V.V. Srinivas, P.J. Daniel, T.N. Rao, S. Anandan, Phys. Chem. Chem. Phys. 19, 175 (2017)CrossRefGoogle Scholar
  8. 8.
    Y.D. Cho, G.T.K. Fey, H.M. Kao, J. Power Sources 189, 256 (2009)CrossRefGoogle Scholar
  9. 9.
    Y.H. Nien, J.R. Carey, J.S. Chen, J. Power Sources 193, 822 (2009)CrossRefGoogle Scholar
  10. 10.
    S.N. Guo, H.K. Shen, Z.F. Tie, S. Zhu, P.H. Shi, J.C. Fan, Q.J. Xu, Y.L. Min, J. Power Sources 359, 285 (2017)CrossRefGoogle Scholar
  11. 11.
    C. Tran, R. Singhal, D. Lawrence, V. Kalra, J. Power Sources 293, 373 (2015)CrossRefGoogle Scholar
  12. 12.
    P.P. Yu, Z.M. Zhang, L.X. Zheng, F. Teng, L.F. Hu, X.S. Fang, Adv. Energy Mater. 6, 1601111 (2016)CrossRefGoogle Scholar
  13. 13.
    D.T. Gea, L.L. Yang, L. Fan, C.F. Zhang, X. Xiao, Y. Gogotsic, S. Yang, Nano Energy 11, 568 (2015)CrossRefGoogle Scholar
  14. 14.
    Z.J. Ding, L. Zhao, L.M. Suo, Y. Jiao, S. Meng, Y.S. Hu, Z.X. Wang, L.Q. Chen, Phys. Chem. Chem. Phys. 13, 15127 (2011)CrossRefGoogle Scholar
  15. 15.
    L. Sun, C.G. Tian, Y. Fu, Y. Yang, J. Yin, L. Wang, H.G. Fu, Chem. Eur. J. 20, 564 (2014)CrossRefGoogle Scholar
  16. 16.
    G.A. Ferrero, A.B. Fuertes, M. Sevilla, J. Mater. Chem. A 3, 2914 (2015)CrossRefGoogle Scholar
  17. 17.
    G.P. Xiong, P.G. He, Z.P. Lyu, T.F. Chen, B.Y. Huang, L. Chen, T.S. Fisher, Nat. Commun. 9, 790 (2018)CrossRefGoogle Scholar
  18. 18.
    C.Y. Xiong, T.H. Li, T.K. Zhao, Y.D. Shang, A.L. Dang, X.L. Ji, H. Li, J.G. Wang, Electrochim. Acta 217, 9 (2016)CrossRefGoogle Scholar
  19. 19.
    X.Y. Li, Y.J. Xu, G.H. Hu, Z.B. Luo, D.D. Xu, T. Tang, J.F. Wen, M. Li, T.Y. Zhou, Y. Cheng, Electrochim. Acta 280, 33 (2018)CrossRefGoogle Scholar
  20. 20.
    X.Y. Li, T. Tang, M. Li, X.C. He, Appl. Phys. Lett. 106, 0131101 (2015)CrossRefGoogle Scholar
  21. 21.
    Y.J. Xu, X.Y. Li, G.H. Hu, T. Wu, Y. Luo, L. Sun, T. Tang, J.F. Wen, H. Wang, M. Li, Appl. Surf. Sci. 422, 847 (2017)CrossRefGoogle Scholar
  22. 22.
    H.B. Wang, T. Maiyalagan, X. Wang, ACS Catal. 2, 781 (2012)CrossRefGoogle Scholar
  23. 23.
    A.L.M. Reddy, A. Srivastava, S.R. Gowda, H. Gullapalli, M. Dubey, P.M. Ajayan, ACS Nano 4, 6337 (2010)CrossRefGoogle Scholar
  24. 24.
    Z. Jin, J. Yao, C. Kittrell, J.M. Tour, ACS Nano 5, 4112 (2011)CrossRefGoogle Scholar
  25. 25.
    M. Choucair, P. Thordarson, J.A. Stride, Nat. Nanotechnol. 4, 30 (2009)CrossRefGoogle Scholar
  26. 26.
    D. Deng, X. Pan, L. Yu, Y. Cui, Y. Jiang, J. Qi, W.X. Li, Q. Fu, X. Ma, Q. Xue, G. Sun, X. Bao, Chem. Mater. 23, 1188 (2011)CrossRefGoogle Scholar
  27. 27.
    R. Droppa, P. Hammer, A.C.M. Carvalho, M.C. Dos Santos, F. Alvarez, J. Non-Cryst. Solids 874, 299 (2002)Google Scholar
  28. 28.
    C. Journet, W.K. Maser, P. Bernier, A. Loiseau, M.L. de la Chapelle, S. Lefrant, P. Deniard, R. Lee, J.E. Fischer, Nature 388, 756 (1997)CrossRefGoogle Scholar
  29. 29.
    B. Guo, Q. Liu, E. Chen, H. Zhu, L. Fang, J.R. Gong, Nano Lett. 10, 4975 (2010)CrossRefGoogle Scholar
  30. 30.
    D. Geng, Y. Chen, Y. Chen, Y. Li, R. Li, X. Sun, S. Ye, S. Knights, Energy Environ. Sci. 4, 760 (2011)CrossRefGoogle Scholar
  31. 31.
    D. Golberg, Y. Bando, L. Bourgeois, K. Kurashima, T. Sato, Carbon 38, 2017 (2000)CrossRefGoogle Scholar
  32. 32.
    C. Morant, J. Andrey, P. Prieto, D. Mendiola, J.M. Sanz, E. Elizalde, Phys. Status Solidi A 203, 1069 (2006)CrossRefGoogle Scholar
  33. 33.
    D. Long, W. Li, L. Ling, J. Miyawaki, I. Mochida, S.H. Yoon, Langmuir 26, 16096 (2010)CrossRefGoogle Scholar
  34. 34.
    D.W. Wang, I.R. Gentle, G.Q. Lu, Electrochem. Commun. 12, 1423 (2010)CrossRefGoogle Scholar
  35. 35.
    L.F. Chen, Z.H. Huang, H.W. Liang, W.T. Yao, Z.Y. Yu, S.H. Yu, Energy Environ. Sci. 6, 3331 (2013)CrossRefGoogle Scholar
  36. 36.
    K. Chizari, A. Vena, L. Laurentius, U. Sundararaj, Carbon 68, 369 (2014)CrossRefGoogle Scholar
  37. 37.
    J.C. Wang, R.G. Ma, Y. Zhou, Q. Liu, J. Mater. Chem. A 3, 12836 (2015)CrossRefGoogle Scholar
  38. 38.
    J. Tang, J. Liu, C.L. Li, Y.Q. Li, M.O. Tade, S. Dai, Y. Yamauchi, Angew. Chem. Int. Edit. 54, 588 (2015)Google Scholar
  39. 39.
    Y.L. Liu, C.X. Shi, X.Y. Xu, P.C. Sun, T.H. Chen, J. Power Sources 283, 389 (2015)CrossRefGoogle Scholar
  40. 40.
    X.D. Zhang, Y.K. Hou, W. He, G.H. Yang, J.J. Cui, S.K. Liu, X. Song, Z. Huang, Nanoscale 7, 3356 (2015)CrossRefGoogle Scholar
  41. 41.
    S. Debnath, A. Maity, K. Pillay, J. Environ. Chem. Eng. 2, 963 (2014)CrossRefGoogle Scholar
  42. 42.
    H.X. Zhong, P. Zhou, L. Yue, D.P. Tang, L.Z. Zhang, J. Appl. Electrochem. 44, 45 (2014)CrossRefGoogle Scholar
  43. 43.
    Z.H. Wu, J.Y. Yang, B. Yu, B.M. Shi, C.R. Zhao, Z.L. Yu, Rare Met. (2016).
  44. 44.
    L.L. Chai, Q.T. Qu, L.F. Zhang, M. Shen, L. Zhang, H.H. Zheng, Electrochim. Acta 105, 378 (2013)CrossRefGoogle Scholar
  45. 45.
    L. Yue, L.Z. Zhang, H.X. Zhong, J. Power Sources 247, 327 (2014)CrossRefGoogle Scholar
  46. 46.
    Q.R. Li, Z.F. Zhou, X.X. Zhang, S.S. Liu, J. Ceram. Process. Res. 17, 513 (2016)Google Scholar
  47. 47.
    S.J. Rajoba, L.D. Jadhav, P.S. Patil, D.K. Tyagi, S. Varma, B.N. Wani, J. Electron. Mater. 46, 1683 (2017)CrossRefGoogle Scholar
  48. 48.
    Y.Q. Wang, Z.P. Liu, S.M. Zhou, Electrochim. Acta 58, 359 (2011)CrossRefGoogle Scholar
  49. 49.
    Y. Shi, S.L. Chou, J.Z. Wang, D. Wexler, H.J. Li, H.K. Liu, Y. Wu, J. Mater. Chem. 22, 16465 (2012)CrossRefGoogle Scholar
  50. 50.
    W. He, X.D. Zhang, X.Y. Du, Y. Zhang, Y.Z. Yue, J.X. Shen, M. Li, Electrochim. Acta 112, 295 (2013)CrossRefGoogle Scholar
  51. 51.
    P. Ranjan, R. Laha, J. Balakrishnan, J. Raman Spectrosc. 48, 586 (2017)CrossRefGoogle Scholar
  52. 52.
    A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth, A.K. Geim, Phys. Rev. Lett. 97, 187406 (2006)Google Scholar
  53. 53.
    L.M. Malard, M.A. Pimenta, G. Dresselhaus, M.S. Dresselhaus, Phys. Rep. 473, 51 (2009)CrossRefGoogle Scholar
  54. 54.
    A. Das, B. Chakraborty, A.K. Sood, Bull. Mater. Sci. 31, 579 (2008)CrossRefGoogle Scholar
  55. 55.
    C.F. Armer, M. Lübke, M.V. Reddyde, J.A. Darrc, X. Li, A. Lowe, J. Power Sources 353, 40 (2017)CrossRefGoogle Scholar
  56. 56.
    S.B. Kulkarni, U.M. Patil, I. Shackery, J.S. Sohn, S. Lee, B. Park, S. Jun, J. Mater. Chem. A 2, 4989 (2014)CrossRefGoogle Scholar
  57. 57.
    V. Datsyuk, M. Kalyva, K. Papagelis, J. Parthenios, D. Tasis, A. Siokou, I. Kallitsis, C. Galiotis, Carbon 46, 833 (2008)CrossRefGoogle Scholar
  58. 58.
    F. Ye, B. Zhao, R. Ran, Z. Shao, Chem.: A Eur J. 20, 4055 (2014)CrossRefGoogle Scholar
  59. 59.
    D.Y. Chung, K.J. Lee, S.H. Yu, M. Kim, S.Y. Lee, O.H. Kim, H.J. Park, Y.E. Sung, Adv. Energy Mater. 5, 1401309 (2015)CrossRefGoogle Scholar
  60. 60.
    H. Srinivasan, K. Velayutham, R. Ravichandran, Int. J. Biol. Macromol. 107, 662 (2018)CrossRefGoogle Scholar
  61. 61.
    M.S. Benhabiles, R. Salah, H. Lounici, N. Drouiche, M.F.A. Goosen, N. Mameri, Food Hydrocoll. 29, 48 (2012)CrossRefGoogle Scholar
  62. 62.
    K. Kurita, Mar. Biotechnol. 8, 203 (2003)CrossRefGoogle Scholar
  63. 63.
    M.S. Benhabiles, N. Abdi, N. Drouiche, H. Lounici, A. Pauss, M.F.A. Goosend, N. Mameri, Mater. Sci. Eng. C 32, 922 (2012)CrossRefGoogle Scholar
  64. 64.
    B. Wang, W.A. Abdulla, D.L. Wang, X.S. Zhao, Energy Environ. Sci. 8, 869 (2015)CrossRefGoogle Scholar
  65. 65.
    L. Wen, X.D. Hu, H.Z. Luo, F. Li, H.M. Cheng, Particuology 22, 24 (2015)CrossRefGoogle Scholar
  66. 66.
    Y. Huang, H. Liu, Y.C. Lu, Y.L. Hou, Q. Li, J. Power Sources 284, 236 (2015)CrossRefGoogle Scholar
  67. 67.
    T. Nagakane, H. Yamauchi, K. Yuki, M. Ohji, A. Sakamoto, T. Komatsu, T. Honma, M. Zou, G. Park, T. Sakai, Solid State Ion. 206, 78 (2012)CrossRefGoogle Scholar
  68. 68.
    C.L. Wei, W. He, X.D. Zhang, S.J. Liu, C. Jin, S.K. Liu, Z. Huang, RSC Adv. 5, 28662 (2015)CrossRefGoogle Scholar
  69. 69.
    X.D. Zhang, X.L. Xu, W. He, G.H. Yang, J.X. Shen, J.H. Liu, Q.Z. Liu, J. Mater. Chem. A 3, 22247 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.The College of Materials Science and EngineeringBeijing University of TechnologyBeijingChina
  2. 2.Shenzhen Key Laboratory of Advanced Thin Films and Applications, College of Physics and EnergyShenzhen UniversityShenzhenChina

Personalised recommendations