Titania nanotubes dispersed graphitic carbon nitride nanosheets as efficient electrode materials for supercapacitors

  • Jithesh Kavil
  • P. M. Anjana
  • Pradeepan Periyat
  • R. B. Rakhi


Herein, we report the synthesis of a hybrid nanocomposite containing one dimensional (1D) TiO2 nanotube supported over a two dimensional (2D) network of conducting graphitic carbon nitride (g-C3N4) nanosheets by a facile hydrothermal strategy. Symmetric supercapacitors based on the hybrid composite electrodes were fabricated and their electrochemical energy storage performances were evaluated and the results were compared with individual component based supercapacitors. The symmetric supercapacitor based on the composite with 1:4 weight ratios of TiO2 and g-C3N4 exhibited a remarkable increase in the specific capacitance in comparison with the individual components. The improvement in electrochemical behavior of the composite sample was attributed to the increase in surface area of the composite due to the spacer effect of titania nanotubes in the 2D g-C3N4 nanosheets.



JitheshKavil is grateful to University Grants Commission, Govt. of India for FDP fellowship. R.B.Rakhi acknowledges the support of Ramanujan Fellowship, Department of Science and Technology (DST), Govt.of India and CSIR-NIIST Thiruvananthapuram, India.

Compliance with ethical standards

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.


  1. 1.
    Q. Qu, S. Yang, X. Feng, 2D sandwich-like sheets of iron oxide grown on graphene as high energy anode material for supercapacitors. Adv. Mater. 23, 5574–5574+ (2011)CrossRefGoogle Scholar
  2. 2.
    H. Chen, T.N. Cong, W. Yang, C. Tan, Y. Li, Y. Ding, Progress in electrical energy storage system: a critical review. Prog. Nat. Sci. 19, 291–312 (2009)CrossRefGoogle Scholar
  3. 3.
    G. Wang, L. Zhang, J. Zhang, A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev. 41, 797–828 (2012)CrossRefGoogle Scholar
  4. 4.
    R.B. Rakhi, H.N. Alshareef, Enhancement of the energy storage properties of supercapacitors using graphene nanosheets dispersed with metal oxide-loaded carbon nanotubes. J. Power Sources 196, 8858–8865 (2011)CrossRefGoogle Scholar
  5. 5.
    X. Lu, G. Wang, T. Zhai, M. Yu, J. Gan, Y. Tong et al., Hydrogenated TiO2 nanotube arrays for supercapacitors. Nano Lett. 12, 1690–1696 (2012)CrossRefGoogle Scholar
  6. 6.
    C.-C. Hu, K.-H. Chang, M.-C. Lin, Y.-T. Wu, Design and tailoring of the nanotubular arrayed architecture of hydrous RuO2 for next generation supercapacitors. Nano Lett. 6, 2690–2695 (2006)CrossRefGoogle Scholar
  7. 7.
    J.W. Lee, T. Ahn, J.H. Kim, J.M. Ko, J.-D. Kim, Nanosheets based mesoporous NiO microspherical structures via facile and template-free method for high performance supercapacitors. Electrochim. Acta 56, 4849–4857 (2011)CrossRefGoogle Scholar
  8. 8.
    X. Xia, J. Tu, Y. Mai, X. Wang, C. Gu, Zhao X-b. Self-supported hydrothermal synthesized hollow Co3O4 nanowire arrays with high supercapacitor capacitance. J. Mater. Chem. 21, 9319–9325 (2011)CrossRefGoogle Scholar
  9. 9.
    Q. Qu, P. Zhang, B. Wang, Y. Chen, S. Tian, Y. Wu et al., Electrochemical performance of MnO2 nanorods in neutral aqueous electrolytes as a cathode for asymmetric supercapacitors. J. Phys. Chem. C 113, 14020–14027 (2009)CrossRefGoogle Scholar
  10. 10.
    Y.-H. Lin, T.-Y. Wei, H.-C. Chien, S.-Y. Lu, Manganese oxide/carbon aerogel composite: an outstanding supercapacitor electrode material. Adv. Energy Mater. 1, 901–907 (2011)CrossRefGoogle Scholar
  11. 11.
    H. Wu, D. Li, X. Zhu, C. Yang, D. Liu, X. Chen et al., High-performance and renewable supercapacitors based on TiO2 nanotube array electrodes treated by an electrochemical doping approach. Electrochim. Acta 116, 129–136 (2014)CrossRefGoogle Scholar
  12. 12.
    G. Wang, Z.Y. Liu, J.N. Wu, Q. Lu, Preparation and electrochemical capacitance behavior of TiO2-B nanotubes for hybrid supercapacitor. Mater. Lett. 71, 120–122 (2012)CrossRefGoogle Scholar
  13. 13.
    M. Salari, S.H. Aboutalebi, K. Konstantinov, H.K. Liu, A highly ordered titania nanotube array as a supercapacitor electrode. Phys. Chem. Chem. Phys. 13, 5038–5041 (2011)CrossRefGoogle Scholar
  14. 14.
    B. Chen, J. Hou, K. Lu, Formation mechanism of TiO2 nanotubes and their applications in photoelectrochemical water splitting and supercapacitors. Langmuir 29, 5911–5919 (2013)CrossRefGoogle Scholar
  15. 15.
    A. Ramadoss, S.J. Kim, Vertically aligned TiO2 nanorod arrays for electrochemical supercapacitor. J. Alloys Compd. 561, 262–267 (2013)CrossRefGoogle Scholar
  16. 16.
    H. Zhou, Y. Zhong, Z. He, L. Zhang, J. Wang, J. Zhang et al., Three-dimensional nanoporous TiO2 network films with excellent electrochemical capacitance performance. J. Alloys Compd. 597, 1–7 (2014)CrossRefGoogle Scholar
  17. 17.
    M. Yu, Y. Zeng, C. Zhang, X. Lu, C. Zeng, C. Yao et al., Titanium dioxide@polypyrrole core-shell nanowires for all solid-state flexible supercapacitors. Nanoscale 5, 10806–10810 (2013)CrossRefGoogle Scholar
  18. 18.
    C. Xiang, M. Li, M. Zhi, A. Manivannan, N. Wu, Reduced graphene oxide/titanium dioxide composites for supercapacitor electrodes: shape and coupling effects. J. Mater. Chem. 22, 19161–19167 (2012)CrossRefGoogle Scholar
  19. 19.
    Y. Luo, D. Kong, J. Luo, S. Chen, D. Zhang, K. Qiu et al., Hierarchical TiO2 nanobelts@MnO2 ultrathin nanoflakes core-shell array electrode materials for supercapacitors. RSC Adv. 3, 14413–14422 (2013)CrossRefGoogle Scholar
  20. 20.
    H. Zhou, Y. Zhang, Electrochemically self-doped TiO2 nanotube arrays for supercapacitors. J. Phys. Chem. C 118, 5626–5636 (2014)CrossRefGoogle Scholar
  21. 21.
    A. Thomas, A. Fischer, F. Goettmann, M. Antonietti, J.-O. Mueller, R. Schloegl et al., Graphitic carbon nitride materials: variation of structure and morphology and their use as metal-free catalysts. J. Mater. Chem. 18, 4893–4908 (2008)CrossRefGoogle Scholar
  22. 22.
    B. Dong, M. Li, S. Chen, D. Ding, W. Wei, G. Gao et al., Formation of g-C3N4@Ni(OH)2 honeycomb nanostructure and asymmetric supercapacitor with high energy and power density. ACS Appl. Mater. Interfaces 9, 17890–17896 (2017)CrossRefGoogle Scholar
  23. 23.
    S. Panneri, P. Ganguly, M. Mohan, B.N. Nair, A.A.P. Mohamed, K.G. Warrier et al., Photoregenerable, bifunctional granules of carbon-doped g-C3N4 as adsorptive photocatalyst for the efficient removal of tetracycline antibiotic. ACS Sustain. Chem. Eng. 5, 1610–1618 (2017)CrossRefGoogle Scholar
  24. 24.
    B. Vijayan, N.M. Dimitrijevic, T. Rajh, K. Gray, Effect of calcination temperature on the photocatalytic reduction and oxidation processes of hydrothermally synthesized titania nanotubes. J. Phys. Chem. C 114, 12994–13002 (2010)CrossRefGoogle Scholar
  25. 25.
    V. Khomenko, E. Frackowiak, F. Beguin, Determination of the specific capacitance of conducting polymer/nanotubes composite electrodes using different cell configurations. Electrochim. Acta 50, 2499–2506 (2005)CrossRefGoogle Scholar
  26. 26.
    F. Dong, L. Wu, Y. Sun, M. Fu, Z. Wu, S.C. Lee, Efficient synthesis of polymeric g-C3N4 layered materials as novel efficient visible light driven photocatalysts. J. Mater. Chem. 21, 15171–15174 (2011)CrossRefGoogle Scholar
  27. 27.
    G. Liao, S. Chen, X. Quan, H. Yu, H. Zhao, Graphene oxide modified g-C3N4 hybrid with enhanced photocatalytic capability under visible light irradiation. J. Mater. Chem. 22, 2721–2726 (2012)CrossRefGoogle Scholar
  28. 28.
    S.C. Pillai, P. Periyat, R. George, D.E. McCormack, M.K. Seery, H. Hayden et al., Synthesis of high-temperature stable anatase TiO2 photocatalyst. J. Phys. Chem. C 111, 1605–1611 (2007)CrossRefGoogle Scholar
  29. 29.
    I. Papailias, T. Giannakopoulou, N. Todorova, D. Demotikali, T. Vaimakis, C. Trapalis, Effect of processing temperature on structure and photocatalytic properties of g-C3N4. Appl. Surf. Sci. 358, 278–286 (2015)CrossRefGoogle Scholar
  30. 30.
    K. Koci, M. Reli, I. Troppova, M. Sihor, J. Kupkova, P. Kustrowski et al., Photocatalytic decomposition of N2O over TiO2/g-C3N4 photocatalysts heterojunction. Appl. Surf. Sci. 396, 1685–1695 (2017)CrossRefGoogle Scholar
  31. 31.
    C. Arbizzani, M. Catellani, M. Mastragostino, C. Mingazzini, N-doped and, p-doped, polydithieno 3,4-B-3′,4′-D thiophene-a narrow-band gap polymer for redox supercapacitors. Electrochim. Acta 40, 1871–1876 (1995)CrossRefGoogle Scholar
  32. 32.
    Z. Yan, L. Xu, S. Huang, J. Bao, J. Qiu, J. Lian et al., Facile preparation of TiO2/C3N4 hybrid materials with enhanced capacitive properties for high performance supercapacitors. J. Alloys Compd. 702, 178–185 (2017)Google Scholar
  33. 33.
    M.D. Stoller, R.S. Ruoff, Best practice methods for determining an electrode material’s performance for ultracapacitors. Energy Environ. Sci. 3, 1294–1301 (2010)CrossRefGoogle Scholar
  34. 34.
    M.S. Kim, T.-W. Lee, J.H. Parka, Controlled TiO2 nanotube arrays as an active material for high power energy-storage devices. J. Electrochem. Soc. 156, A584–A588 (2009)CrossRefGoogle Scholar
  35. 35.
    P.R. Deshmukh, S.V. Patil, R.N. Bulakhe, S.N. Pusawale, J.-J. Shim, C.D. Lokhande, Chemical synthesis of PANI-TiO2 composite thin film for supercapacitor application. RSC Adv. 5, 68939–68946 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of CalicutMalappuramIndia
  2. 2.Chemical Sciences and Technology DivisionCSIR- National Institute of Interdisciplinary Sciences (CSIR-NIIST)ThiruvananthapuramIndia

Personalised recommendations