All-solid-state formation of titania nanotube arrays and their application in photoelectrochemical water splitting

  • Arezoo Hosseini
  • Pawan KumarEmail author
  • Najia Mahdi
  • Yun Zhang
  • Karthik ShankarEmail author


The present work demonstrates for the first time the facile fabrication of TiO2 nanotube arrays (TNTAs) by a fluoride-free solid-state anodization process using LiClO4 containing solid polymeric electrolyte. The resulting nanotubes were tested for photoelectrochemical water splitting. The elimination of liquid electrolytes in electrochemical anodization constitutes a paradigm shift for the formation of nanoporous and nanotubular metal oxides. Our results open a new area of research that uses the distinctive properties of solid polymer electrolytes to achieve targeted doping and nano-morphologies. Characterization of the grown TNTAs indicated solid state anodized TNTAs to consist purely of the anatase phase of titania. The solid-state anodization process provides several advantages over conventional liquid electrolytes such as easy handling and processing, better charge transport, environmentally benign chemicals and methodology. Photoelectrochemical water splitting experiments were performed which confirmed the viability of TNTAs grown by the new solid-state process for photocatalytic applications.



The authors thank the Natural Sciences and Engineering Research Council of Canada (NSERC, Grant No. 06630), Future Energy Systems (Grant No. T12-P002), the Canada Foundation for Innovation (CFI, Grant No. 24661), and CMC Microsystems (Grant No. 5824) for direct and indirect (equipment use) financial support. We acknowledge the UofA Nanofab and staff therein, and the National Research Council-National Institute for Nanotechnology (NRC-NINT) (particularly Dr. Kai Cui) for use of characterization facilities and assistance with instrument use.


  1. 1.
    D. Gong, C.A. Grimes, O.K. Varghese, W.C. Hu, R.S. Singh, Z. Chen, E.C. Dickey, Titanium oxide nanotube arrays prepared by anodic oxidation. J. Mater. Res. 16, 3331–3334 (2001)CrossRefGoogle Scholar
  2. 2.
    P. Roy, S. Berger, P. Schmuki, TiO2 nanotubes: synthesis and applications. Angew. Chem. Int. Ed. 50, 2904–2939 (2011)CrossRefGoogle Scholar
  3. 3.
    S.P. Albu, A. Ghicov, J.M. Macak, R. Hahn, P. Schmuki, Self-organized, free-standing TiO2 nanotube membrane for flow-through photocatalytic applications. Nano Lett. 7, 1286–1289 (2007)CrossRefGoogle Scholar
  4. 4.
    V. Galstyan, A. Vomiero, E. Comini, G. Faglia, G. Sberveglieri, TiO2 nanotubular and nanoporous arrays by electrochemical anodization on different substrates. RSC Adv. 1, 1038–1044 (2011)CrossRefGoogle Scholar
  5. 5.
    S. Farsinezhad, A. Mohammadpour, A.N. Dalrymple, J. Geisinger, P. Kar, M.J. Brett, K. Shankar, Transparent anodic TiO2 nanotube arrays on plastic substrates for disposable biosensors and flexible electronics. J. Nanosci. Nanotechnol. 13, 2885–2891 (2013)CrossRefGoogle Scholar
  6. 6.
    K.S. Mun, S.D. Alvarez, W.Y. Choi, M.J. Sailor, A stable, label-free optical interferometric biosensor based on TiO2 nanotube arrays. ACS Nano 4, 2070–2076 (2010)CrossRefGoogle Scholar
  7. 7.
    Lin, J., K. Liu, X.F. Chen, Synthesis of periodically structured titania nanotube films and their potential for photonic applications. Small 7, 1784–1789 (2011)CrossRefGoogle Scholar
  8. 8.
    J.P. Zou, Q. Zhang, K. Huang, N. Marzari, Ultraviolet photodetectors based on anodic TiO2 nanotube arrays. J. Phys. Chem. C 114, 10725–10729 (2010)CrossRefGoogle Scholar
  9. 9.
    V. Galstyan, E. Comini, G. Faglia, G. Sberveglieri, TiO2 nanotubes: recent advances in synthesis and gas sensing properties. Sensors 13, 14813–14838 (2013)CrossRefGoogle Scholar
  10. 10.
    S. Farsinezhad, H. Sharma, K. Shankar, Interfacial band alignment for photocatalytic charge separation in TiO2 nanotube arrays coated with CuPt nanoparticles. Phys. Chem. Chem. Phys. 17, 29723–29733 (2015)CrossRefGoogle Scholar
  11. 11.
    M.H. Zarifi, S. Farsinezhad, M. Abdolrazzaghi, M. Daneshmand, K. Shankar, Selective microwave sensors exploiting the interaction of analytes with trap states in TiO2 nanotube arrays. Nanoscale 8, 7466–7473 (2016)CrossRefGoogle Scholar
  12. 12.
    P. Qin, M. Paulose, M.I. Dar, T. Moehl, N. Arora, P. Gao, O.K. Varghese, M. Gatzel, M.K. Nazeeruddin, Stable and efficient perovskite solar cells based on titania nanotube arrays. Small 11, 5533–5539 (2015)CrossRefGoogle Scholar
  13. 13.
    S. Kim, G.K. Mor, M. Paulose, O.K. Varghese, K. Shankar, C.A. Grimes, Broad spectrum light harvesting in TiO2 nanotube array - hemicyanine dye - P3HT hybrid solid-state solar cells. IEEE J. Sel. Top. Quantum Electron. 16, 1573–1580 (2010)CrossRefGoogle Scholar
  14. 14.
    C.T. Yip, H.T. Huang, L.M. Zhou, K.Y. Xie, Y. Wang, T.H. Feng, J.S. Li, W.Y. Tam, Direct and seamless coupling of TiO2 nanotube photonic crystal to dye-sensitized solar cell: a single-step approach. Adv. Mater. 23, 5624–5624+ (2011)CrossRefGoogle Scholar
  15. 15.
    X.J. Zhang, F. Han, B. Shi, S. Farsinezhad, G.P. Dechaine, K. Shankar, Photocatalytic conversion of diluted CO2 into light hydrocarbons using periodically modulated multiwalled nanotube arrays. Angew. Chem. Int. Ed. 51, 12732–12735 (2012)CrossRefGoogle Scholar
  16. 16.
    P. Kar, S. Farsinezhad, N. Mahdi, Y. Zhang, U. Obuekwe, H. Sharma, J. Shen, N. Semagina, K. Shankar, Enhanced CH4 yield by photocatalytic CO2 reduction using TiO2 nanotube arrays grafted with Au, Ru, and ZnPd nanoparticles. Nano Res. 9, 3478–3493 (2016)CrossRefGoogle Scholar
  17. 17.
    A. Kongkanand, K. Tvrdy, K. Takechi, M. Kuno, P.V. Kamat, Quantum dot solar cells. Tuning photoresponse through size and shape control of CdSe-TiO2 architecture. J. Am. Chem. Soc. 130, 4007–4015 (2008)CrossRefGoogle Scholar
  18. 18.
    M. Paulose, H.E. Prakasam, O.K. Varghese, L. Peng, K.C. Popat, G.K. Mor, T.A. Desai, C.A. Grimes, TiO2 nanotube arrays of 1000 mu m length by anodization of titanium foil: phenol red diffusion. J. Phys. Chem. C 111, 14992–14997 (2007)CrossRefGoogle Scholar
  19. 19.
    K.C. Popat, M. Eltgroth, T.J. La Tempa, C.A. Grimes, T.A. Desai, Titania nanotubes: a novel platform for drug-eluting coatings for medical implants? Small 3, 1878–1881 (2007)CrossRefGoogle Scholar
  20. 20.
    S. Oh, K.S. Brammer, Y.S.J. Li, D. Teng, A.J. Engler, S. Chien, S. Jin, Stem cell fate dictated solely by altered nanotube dimension. Proc. Natl. Acad. Sci. USA 106, 2130–2135 (2009)CrossRefGoogle Scholar
  21. 21.
    N. Wang, H.Y. Li, W.L. Lu, J.H. Li, J.S. Wang, Z.T. Zhang, Y.R. Liu, Effects of TiO2 nanotubes with different diameters on gene expression and osseointegration of implants in minipigs. Biomaterials 32, 6900–6911 (2011)CrossRefGoogle Scholar
  22. 22.
    T. Kanbara, M. Inami, T. Yamamoto, New solid-state electric double-layer capacitor using poly(vinyl alcohol)-based polymer solid electrolyte. J. Power Sources 36, 87–93 (1991)CrossRefGoogle Scholar
  23. 23.
    M.A. De Paoli, G. Casalbore-Miceli, E.M. Girotto, W.A. Gazotti, All polymeric solid state electrochromic devices. Electrochim. Acta 44, 2983–2991 (1999)CrossRefGoogle Scholar
  24. 24.
    T. Stergiopoulos, I.M. Arabatzis, G. Katsaros, P. Falaras, Binary polyethylene oxide/titania solid-state redox electrolyte for highly efficient nanocrystalline TiO2 photoelectrochemical cells. Nano Lett. 2, 1259–1261 (2002)CrossRefGoogle Scholar
  25. 25.
    S. Rajendran, M. Sivakumar, R. Subadevi, Li-ion conduction of plasticized PVA solid polymer electrolytes complexed with various lithium salts. Solid State Ion. 167, 335–339 (2004)CrossRefGoogle Scholar
  26. 26.
    Z. Zhu, M. Hong, D. Guo, J. Shi, Z. Tao, J. Chen, All-solid-state lithium organic battery with composite polymer electrolyte and pillar [5] quinone cathode. J. Am. Chem. Soc. 136, 16461–16464 (2014)CrossRefGoogle Scholar
  27. 27.
    Y.M. Hunge, A.A. Yadav, V.L. Mathe, Oxidative degradation of phthalic acid using TiO2 photocatalyst. J. Mater. Sci.: Mater. Electron. 29, 6183–6187 (2018)Google Scholar
  28. 28.
    Ali T., Y.M. Hunge, A. Venkatraman, UV assisted photoelectrocatalytic degradation of reactive red 152 dye using spray deposited TiO2 thin films. J. Mater. Sci.: Mater. Electron. 29, 1209–1215 (2018)Google Scholar
  29. 29.
    P. Kar, Y. Zhang, S. Farsinezhad, A. Mohammadpour, B.D. Wiltshire, H. Sharma, K. Shankar, Rutile phase n- and p-type anodic titania nanotube arrays with square-shaped pore morphologies. Chem. Commun. 51, 7816–7819 (2015)CrossRefGoogle Scholar
  30. 30.
    Y. Izumi, Recent advances in the photocatalytic conversion of carbon dioxide to fuels with water and/or hydrogen using solar energy and beyond. Coord. Chem. Rev. 257, 171–186 (2013)CrossRefGoogle Scholar
  31. 31.
    E.V. Kondratenko, G. Mul, J. Baltrusaitis, G.O. Larrazábal, J. Pérez-Ramírez, Status and perspectives of CO2 conversion into fuels and chemicals by catalytic, photocatalytic and electrocatalytic processes. Energy Environ. Sci. 6, 3112–3135 (2013)CrossRefGoogle Scholar
  32. 32.
    S.N. Habisreutinger, L. Schmidt-Mende, J.K. Stolarczyk, Photocatalytic reduction of CO2 on TiO2 and other semiconductors. Angew. Chem. Int. Ed. 52, 7372–7408 (2013)CrossRefGoogle Scholar
  33. 33.
    J. Tang, J.R. Durrant, D.R. Klug, Mechanism of photocatalytic water splitting in TiO2. Reaction of water with photoholes, importance of charge carrier dynamics, and evidence for four-hole chemistry. J. Am. Chem. Soc. 130, 13885–13891 (2008)CrossRefGoogle Scholar
  34. 34.
    J.-M. Wu, H.C. Shih, W.-T. Wu, Formation and photoluminescence of single-crystalline rutile TiO2 nanowires synthesized by thermal evaporation. Nanotechnology 17, 105 (2005)CrossRefGoogle Scholar
  35. 35.
    J. Shi, X. Wang, Growth of rutile titanium dioxide nanowires by pulsed chemical vapor deposition. Cryst. Growth Des. 11, 949–954 (2011)CrossRefGoogle Scholar
  36. 36.
    B. Liu, E.S. Aydil, Growth of oriented single-crystalline rutile TiO2 nanorods on transparent conducting substrates for dye-sensitized solar cells. J. Am. Chem. Soc. 131, 3985–3990 (2009)CrossRefGoogle Scholar
  37. 37.
    O.K. Varghese, D. Gong, M. Paulose, C.A. Grimes, E.C. Dickey, Crystallization and high-temperature structural stability of titanium oxide nanotube arrays. J. Mater. Res. 18, 156–165 (2003)CrossRefGoogle Scholar
  38. 38.
    Y. Rui, Y. Wang, Q. Zhang, Q. Chi, M. Zhang, H. Wang, Y. Li, C. Hou, In-situ construction of three-dimensional titania network on Ti foil toward enhanced performance of flexible dye-sensitized solar cells. Appl. Surf. Sci. 380, 210–217 (2016)CrossRefGoogle Scholar
  39. 39.
    L.C. Almeida, M.V. Zanoni, Decoration of Ti/TiO2 nanotubes with Pt nanoparticles for enhanced UV-Vis light absorption in photoelectrocatalytic process. J. Braz. Chem. Soc. 25, 579–588 (2014)Google Scholar
  40. 40.
    S. Yeniyol, Z. He, B. Yüksel, R.J. Boylan, M. Ürgen, T. Özdemir, J.L. Ricci, Antibacterial activity of As-annealed TiO2 nanotubes doped with Ag nanoparticles against periodontal pathogens. Bioinorg. Chem. Appl. 2014, 829496 (2014)CrossRefGoogle Scholar
  41. 41.
    A. Mohammadpour, Synthesis and characterization of TiO2 nanowire and nanotube arrays for increased optoelectronic functionality. University of Alberta, 2014Google Scholar
  42. 42.
    Chen, X., Y.B. Lou, A.C. Samia, C. Burda, J.L. Gole, Formation of oxynitride as the photocatalytic enhancing site in nitrogen-doped titania nanocatalysts: comparison to a commercial nanopowder. Adv. Funct. Mater. 15, 41–49 (2005)CrossRefGoogle Scholar
  43. 43.
    H. Wang, Y. Wu, B.-Q. Xu, Preparation and characterization of nanosized anatase TiO2 cuboids for photocatalysis. Appl. Catal. B 59, 139–146 (2005)CrossRefGoogle Scholar
  44. 44.
    T. Ohsaka, F. Izumi, Y. Fujiki, Raman spectrum of anatase, TiO2. J. Raman Spectrosc. 7, 321–324 (1978)CrossRefGoogle Scholar
  45. 45.
    A. Orendorz, A. Brodyanski, J. Lösch, L. Bai, Z. Chen, Y. Le, C. Ziegler, H. Gnaser, Phase transformation and particle growth in nanocrystalline anatase TiO2 films analyzed by X-ray diffraction and Raman spectroscopy. Surf. Sci. 601, 4390–4394 (2007)CrossRefGoogle Scholar
  46. 46.
    J. Fang, X. Bi, D. Si, Z. Jiang, W. Huang, Spectroscopic studies of interfacial structures of CeO2–TiO2 mixed oxides. Appl. Surf. Sci. 253, 8952–8961 (2007)CrossRefGoogle Scholar
  47. 47.
    F. Tian, Y. Zhang, J. Zhang, C. Pan, Raman spectroscopy: a new approach to measure the percentage of anatase TiO2 exposed (001) facets. J. Phys. Chem. C 116, 7515–7519 (2012)CrossRefGoogle Scholar
  48. 48.
    G.K. Mor, O.K. Varghese, M. Paulose, K. Shankar, C.A. Grimes, A review on highly ordered, vertically oriented TiO2 nanotube arrays: fabrication, material properties, and solar energy applications. Sol. Energy Mater. Sol. Cells 90, 2011–2075 (2006)CrossRefGoogle Scholar
  49. 49.
    S. Farsinezhad, A.N. Dalrymple, K. Shankar, Toward single-step anodic fabrication of monodisperse TiO2 nanotube arrays on non-native substrates. Phys. Status Solidi A 211, 1113–1121 (2014)CrossRefGoogle Scholar
  50. 50.
    A. Mohammadpour, K. Shankar, Magnetic field-assisted electroless anodization: TiO2 nanotube growth on discontinuous, patterned Ti films. J. Mater. Chem. A 2, 13810–13816 (2014)CrossRefGoogle Scholar
  51. 51.
    H.E. Prakasam, K. Shankar, M. Paulose, O.K. Varghese, C.A. Grimes, A new benchmark for TiO2 nanotube array growth by anodization. J. Phys. Chem. C 111, 7235–7241 (2007)CrossRefGoogle Scholar
  52. 52.
    F. Zuo, L. Wang, T. Wu, Z. Zhang, D. Borchardt, P. Feng, Self-doped Ti3+ enhanced photocatalyst for hydrogen production under visible light. J. Am. Chem. Soc. 132, 11856–11857 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Electrical and Computer EngineeringUniversity of AlbertaEdmontonCanada

Personalised recommendations