Effect of organic dyes on structural properties, linear optics and impedance spectroscopy of methyl orange (C.I. acid orange 52) doped polyvinyl alcohol composite thin films

  • W. JilaniEmail author
  • A. Bouzidi
  • I. S. Yahia
  • H. Guermazi
  • H. Y. Zahran
  • G. Saker


The effect of methyl orange (MEO) dye on structural properties, linear optics and impedance spectroscopy of the polymer poly(vinyl alcohol) (PVA) is studied. MEO/PVA composite thin film was prepared via casting technique. The changes in the structures of the samples were characterized by XRD, which revealed that the internal strain improved the growth of the crystal imperfection and distortion with increasing MEO content in the composite samples. The UV–Vis–NIR spectroscopy was used to study the effect of MEO organic on the optical properties of composite thin films. The samples enhanced more potent light UV–Visible absorption and have very effective prohibition UV-light effect even with incorporating MEO content in the range between 190 and 535 nm. The gap energy leads to a decrease in the visible region which could be attributed to the decrease in crystallite sizes with increasing MEO content. Normalized power characteristics of the films at various MEO concentrations were studied. The normalized power is the very interesting behavior to correlate the optical UV–Vis transmittance and the optics limiting effect of the samples. The dependence of frequency on the conductivity has analyzed in phases of an empirical Jonscher’s law. The impedance spectra were analyzed in terms of equivalent circuits involving resistors, capacitors and constant phase elements. Dielectric parameters infer that the incorporating MEO organic dye inside the PVA matrix may be affected by the faster charge transfer properties and behave like a non-ideal capacitor.



The authors express their appreciation to “The Research Center for Advanced Materials Science (RCAMS)” at King Khalid University for funding this work under Grant Number RCAMS/KKU/003-18.


  1. 1.
    R.A. Fisher, Optical Phase Conjugation (Academic Press, New York, 1983)Google Scholar
  2. 2.
    C. Egami, K. Nakagawa, H. Fujiwara, Jpn. J. Appl. Phys. 31, 2937–2940 (1992)CrossRefGoogle Scholar
  3. 3.
    H. Pezeshki, V. Ahmadi, J. Mod. Opt. 60, 103–108 (2013)CrossRefGoogle Scholar
  4. 4.
    Y. Liu, F. Qin, Z.Y. Wei, Q.B. Meng, D.Z. Zhang, Appl. Phys. Lett. 95, 113–116 (2009)Google Scholar
  5. 5.
    K. Omri, I. Najeh, L. El Mir, Ceram. Int. 42, 8940–8948 (2016)CrossRefGoogle Scholar
  6. 6.
    K. Omri, A. Bettaibi, K. Khirouni, L.El Mir, Phys. B 537, 167–175 (2018)CrossRefGoogle Scholar
  7. 7.
    M. Pope, C.E. Swenberg, Electronic Processes in Organic Solids (Oxford University Press, Oxford, 1982)Google Scholar
  8. 8.
    K.C. Kao, W. Hwang, Electrical Transport in Solids (Pergamon Press, Oxford, 1981)Google Scholar
  9. 9.
    M. Sirousazar, M. Kokabi, M. Yari, Iran. J. Pharm. Res. 4, 51–56 (2008)Google Scholar
  10. 10.
    K. Govatsi, A. Chrissanthopoulos, V. Dracopoulos, S.N. Yannopoulos, Nanotechnology 25, 215601 (2014)CrossRefGoogle Scholar
  11. 11.
    H.N. Chandrakala, H. Shivakumaraiah, R. Somashekarappa, S. Somashekar, S. Chinmayee, Indian J. Adv. Chem. Sci. 2, 103–106 (2014)Google Scholar
  12. 12.
    X. Gong, C.Y. Tang, L. Pan, Z. Hao, C.P. Tsui, Compos. Part B 60, 144–149 (2014)CrossRefGoogle Scholar
  13. 13.
    I. Latif, E.E. AL-Abodi, D.H. Badri, J.Al Khafagi, Am. J. Polym. Sci. 2, 135–140 (2012)CrossRefGoogle Scholar
  14. 14.
    N.A.N. Azmy, H. Abdullah, N.M. Naim, A.A. Hamid, S. Shaari, W.H.M.W. Mokhtar, Radiat. Phys. Chem. 103, 108–113 (2014)CrossRefGoogle Scholar
  15. 15.
    A.S. Roy, S. Gupta, S. Sindhu, A. Parveen, P.C. Ramamurthy, Compos. Part B 47, 314–319 (2013)CrossRefGoogle Scholar
  16. 16.
    S. Ebraheem, M.A. El-Ahdal, S. Eid, S.M. Gafar, Egypt. J. Radiat. Sci. Appl. 23, 379–391 (2010)Google Scholar
  17. 17.
    R.F. Bhajantri, V. Ravindrachary, B. Poojary, I.A. Harisha, V. Crasta, Polym. Eng. Sci. 49, 903–909 (2009)CrossRefGoogle Scholar
  18. 18.
    M.Z. Si, Y.P. Kang, Z.G. Zhang, Appl. Surf. Sci. 255, 6007–6010 (2009)CrossRefGoogle Scholar
  19. 19.
    S.J. Lim, B.K. An, S.Y. Park, Macromolecules 38, 6236–6239 (2005)CrossRefGoogle Scholar
  20. 20.
    R.F. Bhajantri, R. Sali, V. Ravindrachary, P.K. Pujari, T. Sheela, S.G. Rathod, AIP Conference Proceedings, vol. 1512, (2013), pp 1280–1281Google Scholar
  21. 21.
    K. Zlatanova, P. Markovsky, I. Spassova, G. Danev, Opt. Mater. 5, 279–283 (1996)CrossRefGoogle Scholar
  22. 22.
    H.P. de Oliveira, C.P. de Melo, J. Appl. Phys. 101, 084113 (2007)CrossRefGoogle Scholar
  23. 23.
    W.A. Al-Taay, M.T. Adul nabi, T.K. Al-Rawi, J. Baghdad Sci. 8(2), 543–550 (2011)Google Scholar
  24. 24.
    A.D. Soory, J. Educ. Sci. 25(1), 79–86 (2012)Google Scholar
  25. 25.
    M.N. Hyder, P. Chen, J. Membr. Sci. 340, 171–180 (2009)CrossRefGoogle Scholar
  26. 26.
    P.B. Bhargav, V.M. Mohan, A.K. Sharma, V.V.R.N. Rao, Curr. Appl. Phys. 9, 165–171 (2009)CrossRefGoogle Scholar
  27. 27.
    J. Malathi, M. Kumaravadivel, G.M. Brahmanandhan, M. Hema, R. Baskaran, S. Selvasekarapandian, J. Non-Cryst. Solids 365, 2277–2281 (2010)CrossRefGoogle Scholar
  28. 28.
    R.M. Hodge, G.H. Edward, G.P. Simon, Polymer 37, 1371–1376 (1996)CrossRefGoogle Scholar
  29. 29.
    I.S. Yahia, M.A.S. Sherif Keshk, Opt. Laser Technol. 90, 197–200 (2017)CrossRefGoogle Scholar
  30. 30.
    A. Costela et al., Medical applications of dye lasers, ed. by F.J. Duarte, Tunable Laser Applications, 2nd edn. (CRC, New York, 2009)Google Scholar
  31. 31.
    F. Yakuphanoglu, M. Sekerci, E. Evin, Phys. B 382, 21–25 (2006)CrossRefGoogle Scholar
  32. 32.
    K.S. Hemalatha, K. Rukmani, N. Suriyamurthy, B.M. Nagabhushana, Mater. Res. Bul. 51, 438–446 (2014)CrossRefGoogle Scholar
  33. 33.
    P. Tao, A. Viswanath, L.S. Schadler, B.C. Benicewicz, R.W. Siegel, ACS. Appl. Mater. Interface 3, 3638–3645 (2011)CrossRefGoogle Scholar
  34. 34.
    P. Singh, A. Kaushal, D. Kaur, J. Alloy Compd. 471, 11–15 (2009)CrossRefGoogle Scholar
  35. 35.
    A. Kurt, Turk. J. Chem. 34, 67–79 (2010)Google Scholar
  36. 36.
    I.S. Yahia, A. Bouzidi, H.Y. Zahran, W. Jilani, S. AlFaify, H. Algarni, H. Guermazi, J. Mol. Struct. 1156, 492–500 (2018)CrossRefGoogle Scholar
  37. 37.
    O. Kaygilia, S. Keserb, T. Atesa, S. Keser, A.A. Al-Ghamdi, F. Yakuphanoglu, Spectrochim. Acta. A 129, 268–273 (2014)CrossRefGoogle Scholar
  38. 38.
    S. More, R. Dhokne, S. Mohari, Mater. Res. Express 4, 055302 (2017)CrossRefGoogle Scholar
  39. 39.
    V. Mydhili, S. Manivannan, J. Appl. Polym. Sci. (2017) CrossRefGoogle Scholar
  40. 40.
    S. Barrau, P. Demont, A. Peigney, C. Laurent, C. Lacabanne, Macromolecules 36, 5187–5194 (2003)CrossRefGoogle Scholar
  41. 41.
    S.B. Aziz, Z.H.Z. Abidin, J. Appl. Polym. Sci. 132, 41774 (2015)CrossRefGoogle Scholar
  42. 42.
    A.K. Jonscher, Dielectric Relaxation in Solids (Chelsea Dielectrics, London, 1993)Google Scholar
  43. 43.
    A. Rahal, S. Megdiche Borchani, K. Guidara, M. Megdiche, R. Soc. Open Sci. 5, 171472 (2018)CrossRefGoogle Scholar
  44. 44.
    A. Zaafouri, M. Megdiche, M. Gargouri, J. Alloys Compd. 584, 152–158 (2014)CrossRefGoogle Scholar
  45. 45.
    M.E. Orazem, I. Frateur, B. Tribollet, V. Vivier, S. Marcelin, N. Pébère, A.L. Bunge, E. A.White, D.P. Riemer, M. Musiani, J. Electrochem. Soc. 160(6), C215–C225 (2013)CrossRefGoogle Scholar
  46. 46.
    P. Muralidharan, M. Venkateswarlu, N. Satyanarayana, J. Non-Cryst. Solid. 351, 583 (2005)CrossRefGoogle Scholar
  47. 47.
    A. Kumar, B.P. Singh, R.N.P. Choudhary, K.A.C.Thakur Awalendra, J. Alloys Compd. 394, 292–302 (2005)CrossRefGoogle Scholar
  48. 48.
    S. Selvasekarapandian, M. Vijaykumar, Mater. Chem. Phys. 80, 29–30 (2003)CrossRefGoogle Scholar
  49. 49.
    A.B. Afzal, M.J. Akhtar, M. Nadeem, M. Ahmad, M.M. Hassan, T. Yasin, M. Mehmood, J. Phys. D Appl. Phys. 42, 015411 (2009)CrossRefGoogle Scholar
  50. 50.
    H.H. Zhou, X.H. Ning, S.L. Li, J.H. Chen, Y.F. Kuang, Thin Solid Films 510, 164–168 (2006)CrossRefGoogle Scholar
  51. 51.
    N.M. Kocherginsky, Z. Wang, Synth. Met. 156, 1065–1072 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Research Unit, Physics of Insulating and Semi-insulating Materials, Faculty of SciencesUniversity of SfaxSfaxTunisia
  2. 2.Department of Physics, Faculty of Science Sciences and Arts Dhahran Al JanoubKing Khalid UniversityAbhaSaudi Arabia
  3. 3.Technical and Vocational Training CorporationAhad RufidahSaudi Arabia
  4. 4.Research Center for Advanced Materials Science (RCAMS)King Khalid UniversityAbhaSaudi Arabia
  5. 5.Advanced Functional Materials & Optoelectronic Laboratory (AFMOL), Department of Physics, Faculty of ScienceKing Khalid UniversityAbhaSaudi Arabia
  6. 6.Nanoscience Laboratory for Environmental and Bio-medical Applications (NLEBA), Semiconductor Lab., Department of Physics, Faculty of EducationAin Shams UniversityCairoEgypt

Personalised recommendations