Assess low-k/ultralow-k materials integrity by shear test on bumps of a chip

  • Chen Yang
  • Lei Wang
  • Kehang Yu
  • Jun WangEmail author
  • Fei Xiao
  • Wenqi Zhang


The low-k/ultralow-k (LK/ULK) dielectric materials are introduced in the back-end of line (BEOL) to reduce the R-C delay in a chip with 40 nm technology node and beyond. The chips are generally packaged using a flip-chip technology, in which copper pillars are electrical connections and mechanical supports. Owing to the thermal mismatch between materials, copper pillars are sheared and higher stresses arise near the roots of the copper pillars, which causes cracks in LK/ULK materials that are porous and fragile in mechanics. In this study a rapid mechanical shear test of a copper pillar was proposed to mimic the corresponding shear force due to a temperature drop by finite element analysis (FEA) and bump shear experiments. FEA results for shear tests are in compliance with that of experiments and the high stress regions are conformed to the failure locations in the BEOL. Using the verified finite element models, a linear relationship between the shear force, the shear height and the temperature differential was built by keeping a bump in a same shear impact, which is valid for the temperature differential within 120 °C. In the suitable temperature range a mechanical shear test can quickly assess the failure possibility of LK/ULK materials caused by a temperature differential for evaluating their reliability in BEOL of an advanced chip.



The financial supports of National Nature Science Foundation of China (No. 61774044) and National Science and Technology Major Project of China (No. 2017ZX02315005) are greatly acknowledged.


  1. 1.
    D. Ingerly, S. Agraharam, D. Becher, V. Chikarmane, K. Fischer, R. Grover, M. Goodner, S. Haight, J. He, T. Ibrahim, S. Joshi, H. Kothari, K. Lee, Y. Lin, C. Litteken, H. Liu, E. Mays, P. Moon, T. Mule, S. Nolen, N. Patel, S. Pradhan, J. Robinson, P. Ramanarayanan, S. Sattiraju, T. Schroeder, S. Williams, P. Yashar, in Interconnect Technology Conference (2008), p. 216Google Scholar
  2. 2.
    S. Ma, Y. Wang, Z. Min, L. Zhong, Adv. Polym. Technol. 32, 1158 (2014)Google Scholar
  3. 3.
    Z. Ming, Z. Beichao, Mater. Sci. Semicond. Process. 36, 170 (2015)CrossRefGoogle Scholar
  4. 4.
    X.-Y. Zhao, H.-J. Liu, Polym. Int. 59, 597 (2010)Google Scholar
  5. 5.
    P.A. Kohl, Annu. Rev. Chem. Biomol. Eng. 2, 379 (2011)CrossRefGoogle Scholar
  6. 6.
    C.D. Hartfield, E.T. Ogawa, Y.-J. Park, T.-C. Chiu, H. Guo, IEEE Trans. Device Mater. Reliab. 4, 129 (2004)CrossRefGoogle Scholar
  7. 7.
    L.L. Mercado, C. Goldberg, S.-M. Kuo, T.-Y. Lee, S.K. Pozder, IEEE Trans. Device Mater. Reliab. 3, 111 (2003)CrossRefGoogle Scholar
  8. 8.
    G. Wang, C. Merrill, J.-H. Zhao, S.K. Groothuis, P.S. Ho, IEEE Trans. Device Mater. Reliab. 3, 119 (2003)CrossRefGoogle Scholar
  9. 9.
    G. Wang, P.S. Ho, S. Groothuis, Microelectron. Reliab. 45, 1079 (2005)CrossRefGoogle Scholar
  10. 10.
    P.S. Ho, G. Wang, M. Ding, J.-H. Zhao, X. Dai, Microelectron. Reliab. 44, 719 (2004)CrossRefGoogle Scholar
  11. 11.
    K.N. Tu, Microelectron. Reliab. 51, 517 (2011)CrossRefGoogle Scholar
  12. 12.
    Z. Suo, J.W. Hutchinson, Mater. Sci. Eng. 107, 135 (1989)CrossRefGoogle Scholar
  13. 13.
    Q. Ma, J. Mater. Res. 12, 840 (1997)CrossRefGoogle Scholar
  14. 14.
    R.H. Dauskardt, M. Lane, Q. Ma, N. Krishna, Eng. Fract. Mech. 61, 141 (1998)CrossRefGoogle Scholar
  15. 15.
    K.M. Liechti, T. Freda, J. Adhes. 28, 145 (1989)CrossRefGoogle Scholar
  16. 16.
    C.C. Lee, C.C. Lee, Y.W. Yang, J. Mater. Sci. 21, 787 (2010)Google Scholar
  17. 17.
    I.I. Ocana, J. Molinaaldareguia, D. Gonzalez, M. Elizalde, J. Sanchez, J. Martinezesnaola, J. Gilsevillano, T. Scherban, D. Pantuso, B. Sun, Acta Mater. 54, 3453 (2006)CrossRefGoogle Scholar
  18. 18.
    H. Geisler, M.U. Lehr, A. Platz, U. Mayer, P. Hofmann, H.-J. Engelmann, in American Institute of Physics Conference Series (2011), p. 104Google Scholar
  19. 19.
    L. Lin, J. Wang, L. Wang, W. Zhang, Microelectron. Reliab. 65, 198–204 (2016)CrossRefGoogle Scholar
  20. 20.
    S. Kumar, J.Y. Park, J.P. Jung, Electron. Mater. Lett. 7, 365–373 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Materials ScienceFudan UniversityShanghaiChina
  2. 2.National Center for Advanced PackagingWuxiChina
  3. 3.Institute of Microelectronics of Chinese Academy of SciencesBeijingChina

Personalised recommendations