Organoboron donor-π-acceptor chromophores for small-molecule organic solar cells

  • J. C. NolascoEmail author
  • J. W. Ryan
  • M. Rodríguez
  • A. Castro-Carranza
  • J. L. Maldonado
  • G. Ramos-Ortiz
  • O. Barbosa-Garcia
  • J. Gutowski
  • E. Palomares
  • J. Parisi


We introduce the use of facilely synthesizable and low-bandgap boron chromophores as donors in planar heterojunction solar cells. We show that simple changes in the compositional properties of these molecules can improve the performance of the devices. A simultaneous grafting of NO2 acceptor and N(Et2) donor groups into the molecule core causes an increase in efficiency of almost 50%. Such enhanced efficiency is mainly due to a higher photocurrent. The origin of this phenomenon is investigated.



J.C. Nolasco is indebted to the Alexander von Humboldt Foundation for providing a George Foster Grant. A. Castro-Carranza acknowledges support from the University of Bremen and the FP7-PEOPLE-2012EU Marie-Curie Action COFUND “BREMEN TRAC”, project no. 600411, and from the National Council of Science and Technology CONACYT Mexico. The authors thank the support obtained from the projects: Ce-MieSol 207450/27, 2013-02 (México); Fondo Sectorial CONACYT-SENER-Sustentabilidad Energética 245754, 2014-02 (México); CONACyT Grant 293371 (Mexico) “Laboratorio Nacional de Materiales Grafénicos (LNMG)”, and Proyectos de Ciencia y Tecnología Aplicada en Temas de Frontera. Mónica Jenith C. Flores (Centro de Investigaciones en Óptica) is acknowledged for her technical assistance in chemical synthesis. This research is also a result of collaborative work in the framework of Redes Temáticas CONACYT: development of devices and low-cost sustainable technology.

Supplementary material

10854_2018_9732_MOESM1_ESM.doc (41 kb)
Supplementary material 1 (DOC 41 KB)


  1. 1.
    X. Che, Y. Li, Y. Qu, R. Forrest, Nat. Energy 3, 422 (2018)CrossRefGoogle Scholar
  2. 2.
    H. Zhang, H. Yao, J. Hou, J. Zhu, J. Zhang, W. Li, R. Yu, B. Gao, S. Zhang, J. Hou, Adv. Mater. 30, 1800613 (2018)CrossRefGoogle Scholar
  3. 3.
    H. Li, Z. Xiao, L. Ding, J. Wang, Sci. Bull. 63, 340 (2018)CrossRefGoogle Scholar
  4. 4.
    Z. Xiao, X. Jia, L. Ding, Sci. Bull. 62, 1562 (2017)CrossRefGoogle Scholar
  5. 5.
    M.F. Hawthorne, M.W. Lee, J. Neurooncol. 62, 33 (2003)Google Scholar
  6. 6.
    F. Algi, A. Cihaner, Org. Electron. 10, 453 (2009)CrossRefGoogle Scholar
  7. 7.
    J.F. Salinas, J.L. Maldonado, G. Ramos-Ortíz, M. Rodríguez, M.A. Meneses-Nava, O. Barbosa-García, R. Santillan, N. Farfán, Sol. Energy Mater. Sol. Cells. 95, 59 (2011)CrossRefGoogle Scholar
  8. 8.
    M. Rodriguez, R. Castro-Beltran, G. Ramos-Ortiz, J.L. Maldonado, N. Farfán, O. Dominguez, J. Rodriguez, R. Santillan, M.A. Meneses-Nava, O. Barbosa-García, J. Peon, Synth. Met. 159, 1281 (2009)CrossRefGoogle Scholar
  9. 9.
    M. Rodríguez, J.L. Maldonado, G. Ramos-Ortiz, J.L. Lamère, P.G. Lacroix, N. Farfán, M.E. Ochoa, R. Santillan, M.A. Meneses, O. Nava, K. Barbosa-Garcia, Nakarani, New J. Chem. 33, 1693 (2009)CrossRefGoogle Scholar
  10. 10.
    R. Pandey, A.A. Gunawan, K.A. Mkhoyan, R.J. Holmes, Adv. Funct. Mater. 22, 617 (2012)CrossRefGoogle Scholar
  11. 11.
    B.S. Kim, B. Ma, V.R. Donuru, H. Liu, J.M.J. Fréchet, Chem. Commun. 46, 4148 (2010)CrossRefGoogle Scholar
  12. 12.
    G.E. Morse, M.G. Helander, J. Stanwick, J.M. Sauks, A.S. Paton, Z.H. Lu, T.P. Bender, J. Phys. Chem. C 115, 11709 (2011)CrossRefGoogle Scholar
  13. 13.
    J.C. Nolasco, G. Ramos-Ortiz, J.L. Maldonado, O. Barbosa-García, B. Ecker, E. von Hauff, Appl. Phys. Lett. 104, 43308 (2014)CrossRefGoogle Scholar
  14. 14.
    R. Noriega, J. Rivnay, K. Vandewal, F.P.V. Koch, N. Stingelin, P. Smith, M.F. Toney, A. Salleo, Nat. Mater 12, 1038 (2013)CrossRefGoogle Scholar
  15. 15.
    D.A. Seanor, Electrical Properties of Polymers (Academic Press, Inc., London, 1982), p. 70Google Scholar
  16. 16.
    Z. Liu, L. Zhang, M. Shao, Y. Wu, D. Zeng, X. Cai, J. Duan, X. Zhang, X. Gao, Appl. Mater. Interfaces 10, 762 (2018)CrossRefGoogle Scholar
  17. 17.
    S. Wen, Y. Wu, Y. Wang, Y. Li, L. Liu, H. Jiang, Z. Liu, R. Yang, ChemSusChem 11, 360 (2018)CrossRefGoogle Scholar
  18. 18.
    Z. Liu, Y. Wu, H. Jiang, L. Zhang, D. Zeng, X. Zhang, Q. Zhang, X. Gao, J. Mater. Sci. Mater. Electron. 29, 10362 (2018)CrossRefGoogle Scholar
  19. 19.
    J.A. Del-Oso, J.L. Maldonado, G. Ramos-Ortiz, G.M. Rodríguez, M. Güizado-Rodriguez, J. Escalante, B.A. Frontana-Uribe, E. Pérez-Gutiérrez, R. Santillan, Synth. Met. 196, 83 (2014)CrossRefGoogle Scholar
  20. 20.
    Y. Lia, Y. Cao, J. Gao, D. Wang, G. Yu, A.J. Heeger, Synth. Met. 99, 243 (1999)CrossRefGoogle Scholar
  21. 21.
    J. Tauc, R. Grigorovici, A. Vancu, Phys. Status Solidi 15, 627 (1966)CrossRefGoogle Scholar
  22. 22.
    Y. Min, C. Dou, H. Tian, Y. geng, J. Liu, L. Wang, Angew. Chem. Int. Ed. 57, 2000 (2018)CrossRefGoogle Scholar
  23. 23.
    C. Dou, Z. Ding, Z. Zhang, Z. Xie, J. Liu, L. Wang, Angew. Chem. Int. Ed. 54, 3648 (2015)CrossRefGoogle Scholar
  24. 24.
    X. Long, Z. Ding, C. Dou, J. Zhang, J. Liu, L. Wang, Adv. Mater. 28, 6504 (2016)CrossRefGoogle Scholar
  25. 25.
    C. Dou, X. Long, Z. Ding, Z. Xie, J. Liu, L. Wang, Angew. Chem. Int. Ed. 55, 1436 (2016)CrossRefGoogle Scholar
  26. 26.
    M.C. Scharber, D. Mühlbacher, M. Koppe, P. Denk, C. Waldauf, A.J. Heeger, C.J. Brabec, Adv. Mater. 18, 789 (2006)CrossRefGoogle Scholar
  27. 27.
    J. Fischer, D. Ray, H. Kleemann, P. Pahner, M. Schwarze, C. Koerner, K. Vandewal, K. Leo, J. Appl. Phys. 117, 245501 (2015)CrossRefGoogle Scholar
  28. 28.
    Y. Ooyama, Y. Hagiwara, T. Mizumo, Y. Harima, J. Ohshita, RCS Adv. 3, 18099 (2013)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • J. C. Nolasco
    • 1
    • 2
    Email author
  • J. W. Ryan
    • 3
  • M. Rodríguez
    • 4
  • A. Castro-Carranza
    • 5
  • J. L. Maldonado
    • 4
  • G. Ramos-Ortiz
    • 4
  • O. Barbosa-Garcia
    • 4
  • J. Gutowski
    • 5
    • 7
  • E. Palomares
    • 6
    • 8
  • J. Parisi
    • 1
  1. 1.Energy and Semiconductor Research Laboratory, Department of PhysicsCarl von Ossietzky University of OldenburgOldenburgGermany
  2. 2.Science of Sustainable Materials, National School of Higher Studies Unit MoreliaNational Autonomous University of Mexico (ENES Morelia UNAM)MoreliaMexico
  3. 3.International Center for Young Scientists (ICYS)National Institute for Materials Science (NIMS)TsukubaJapan
  4. 4.Research Group of Optical Properties of Materials (GPOM)Centro de Investigaciones en Óptica A.C.LeónMexico
  5. 5.Institute of Solid State Physics, Semiconductor OpticsUniversity of BremenBremenGermany
  6. 6.Institute of Chemical Research of Catalonia (ICIQ)TarragonaSpain
  7. 7.MAPEX Center of Materials and ProcessesUniversity of BremenBremenGermany
  8. 8.Institució Catalana de Recerca i Estudis Avançats (ICREA)BarcelonaSpain

Personalised recommendations