Advertisement

Factors affecting the phase composition of 612 aluminates for Ba–W cathode

  • Jianjun Wei
  • Jinglin Li
  • Yongbao Feng
  • Xiaoyun Li
  • Saisai Xu
  • Tai Qiu
Article

Abstract

The precursor powder of 612 aluminates were synthesized by using liquid-phase co-precipitation method. The microstructure and formation mechanisms of the precursor powder were investigated through X-ray diffraction, thermal gravimetric, differential scanning calorimetry, and scanning electron microscope. The effects of the stacking states of the precursor powder, calcination temperature, and atmosphere on the phase compositions of 612 aluminates were also systematically studied. Results showed that the prepared precursor powder was a mixture of BaCO3, BaCa(CO3)2, and amorphous AlOOH, which with particle size ranging from 20 to 30 nm. The stacking states of the precursor powder considerably influenced the phase composition of aluminates. The pressed precursor tablet can ensure the final phase composition of aluminates was Ba3CaAl2O7. When the precursor powder was calcined in CO2 atmosphere at 1400 °C for 2 h, the phase composition included Ba5CaAl4O12, BaAl2O4, and BaCO3. When the calcination temperature was increased, the main crystalline phase of aluminates changed from Ba5CaAl4O12 to Ba3CaAl2O7 in flowing N2, Ar, and static air. The barium–tungsten cathode prepared by aluminates of Ba3CaAl2O7 phase showed better emissivity than that of Ba5CaAl4O12 phase. The current density of pulse emission at 1050 °C can reach 35.31 A/cm2.

References

  1. 1.
    V.G. Vorozheikin, V.I. Kozlov, in IEEE International Vacuum Electron Sources Conference (2004), pp. 307–308Google Scholar
  2. 2.
    X. Wang, Y. Zhang, Y. Ding, X. Du, S. Qi, Q. Zhao, Y. Li, Q. Zhang, M. Meng, X. Hu, Zhenkong Kexue Yu Jishu Xuebao/Journal Vac. Sci. Technol. 35, 468 (2015)Google Scholar
  3. 3.
    J.X. Bao, B.F. Wan, P.J. Wang, Vacuum 81, 1029 (2007)CrossRefGoogle Scholar
  4. 4.
    . C. Higashi, N.B. De Lima, J.R. Matos, C. Giovedi, in IEEE SBMO/IEEE MTT-S International Conference on Microwave and Optoelectronics (2005), pp. 222–225Google Scholar
  5. 5.
    L. Schoenbeck, Georg. Inst. Technol. (2005)Google Scholar
  6. 6.
    M. Shiran, M.J. Hadianfard, M.M. Shiezadeh, Int. J. Chem. Eng. Appl. 4, 88 (2013)Google Scholar
  7. 7.
    Q. Wang, W. Liu, L. Dong, X. Zhu, X. Liu, J.S. Wang, in IEEE Vacuum Electronics Conference (2015), pp. 1–2Google Scholar
  8. 8.
    C. Higashi, N.B. De Lima, J.R. Matos, C. Giovedi, C.C. Motta, in SBMO/IEEE MTT-S International Conference on Microwave and Optoelectronics, IEEE (2005), pp. 345–348Google Scholar
  9. 9.
    F.F. Sene, V.O. Santos, C.C. Motta, in IEEE Vacuum Electron Sources Conference (2012), pp. 165–166Google Scholar
  10. 10.
    K. Dudley, Vacuum 11, 84 (1961)CrossRefGoogle Scholar
  11. 11.
    J.M. Roquais, F. Poret, R. Le Doze, J.L. Ricaud, A. Monterrin, A. Steinbrunn, Appl. Surf. Sci. 215, 5 (2003)CrossRefGoogle Scholar
  12. 12.
    I.P. Melnikova, V.G. Vorozheikin, D.A. Usanov, Appl. Surf. Sci. 215, 59 (2003)CrossRefGoogle Scholar
  13. 13.
    L.E. Branovich, D.W. Eckart, US 5298830 A. (1994)Google Scholar
  14. 14.
    I. Brodie, R.O. Jenkins, Br. J. Appl. Phys. 8, 27 (1957)CrossRefGoogle Scholar
  15. 15.
    F.F. Sene, V.A. Mancini, V.O. Santos, C.C. Motta, in IEEE Vacuum Electronics Conference (2013), pp. 1–2Google Scholar
  16. 16.
    F.F. Sene, A.G.L. Silva, C.C. Motta, in IEEE Vacuum Electron Sources Conference (2012), pp. 183–184Google Scholar
  17. 17.
    R.A. Lipeles, H.K.A. Kan, Appl. Surf. Sci. 16, 189 (1983)CrossRefGoogle Scholar
  18. 18.
    E.S. Rittner, W.C. Rutledge, R.H. Ahlert, J. Appl. Phys. 28, 1468 (1957)CrossRefGoogle Scholar
  19. 19.
    K.F. Wang, L. Wei, J. Wang, Y. Cui, W. Xi, Rare Met. Mater. Eng. 42, 2326 (2013)Google Scholar
  20. 20.
    K.F. Wang, L. Wei, J.S. Wang, J. Inorg. Mater. 28, 1354 (2013)CrossRefGoogle Scholar
  21. 21.
    H. Tian, Y.W. Liu, Y. Han, H.X. Hong, J.X. Yang, Z.Y. Xu, M.F. Meng, H.L. Zhang, J. Vac. Sci. Technol. 29, 64 (2009)Google Scholar
  22. 22.
    X. Wang, X. Liao, J. Luo, Q. Zhao, Chin. J. Vac. Sci. Technol. 24, 67 (2004)Google Scholar
  23. 23.
    M.G. Ma, Y.J. Zhu, J.F. Zhu, Z.L. Xu, Mater. Lett. 61, 5133 (2007)CrossRefGoogle Scholar
  24. 24.
    C.A. Weiss, K.T. Cancel, R.D. Moser, P.G. Allison, E.R. Gore, M.Q. Chandler, P.G. Malone, J. Nanotechnol. Smart Mater. 105, 1 (2014)Google Scholar
  25. 25.
    H.S. Lee, H.H. Tai, K. Kim, Mater. Chem. Phys. 93, 376 (2005)CrossRefGoogle Scholar
  26. 26.
    H. Liu, Z.H. Shi, Y.Q. Chen, B. Zhao, M.C. Gong, Chin. J. Inorg. Chem. 20, 688 (2004)Google Scholar
  27. 27.
    H. Kumazawa, K. Oki, H.M. Cho, E. Sada, Chem. Eng. Commun. 115, 25 (2007)CrossRefGoogle Scholar
  28. 28.
    K.J. Mackenzie, J. Temuujin, M.E. Smith, P. Angerer, Y. Kameshima, Thermochim. Acta 359, 87 (2000)CrossRefGoogle Scholar
  29. 29.
    S.M. Antao, I. Hassan, Phys. Chem. Miner. 34, 573 (2007)CrossRefGoogle Scholar
  30. 30.
    I. Arvanitidis, D. Siche, S. Seetharaman, Metall. Mater. Trans. B 27, 409 (1996)CrossRefGoogle Scholar
  31. 31.
    Chemical Industry Press Division, Chemical and Chemical Dictionary, 1st edn. (Chemical Industry Press, Beijing, 2003), pp. 2238–2239Google Scholar
  32. 32.
    I. Galan, F.P. Glasser, C. Andrade, J. Therm. Anal. Calorim. 111, 1197 (2013)CrossRefGoogle Scholar
  33. 33.
    E.Q. Zhang, X.Q. Liu, J. Electron. Inf. Technol. 6, 89 (1984)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Jianjun Wei
    • 1
  • Jinglin Li
    • 1
  • Yongbao Feng
    • 1
  • Xiaoyun Li
    • 1
  • Saisai Xu
    • 1
  • Tai Qiu
    • 1
  1. 1.College of Materials Science and EngineeringNanjing Tech UniversityNanjingChina

Personalised recommendations