Advertisement

Effect of ZnO layer thickness upon optoelectrical properties of NiO/ ZnO heterojunction prepared at room temperature

  • Ahmed Obaid M. Alzahrani
  • M. Sh. Abdel-wahab
  • Meshari Alayash
  • M. S. Aida
Article

Abstract

In this work, p-NiO/n-ZnO heterostructures were successfully prepared at room temperature using RF sputtering technique. The influence of ZnO layer thickness on the performance of the heterojunction was investigated. The deposited ZnO layers have a hexagonal Wurtzite structure with preferable growth orientations along (002) and (103) for thinner films. Increasing the thickness results in more crystallographic orientation randomness. The current–voltage measurements of the realized heterojunctions showed a clear rectifying behavior. The measured ideality factor varies from 2.5 to 1.6 according to the thickness of ZnO layer. The series resistance of the device is enlarged with increasing ZnO thickness. The deduced parameters from the I–V characteristics suggest that 200 nm is the optimal thickness of the ZnO layer according to our experimental conditions. We attribute the relatively better performance of this thickness to achieving reasonable compensation between serial resistance and ideality factor. The best heterojunction was tested and successfully used as a UV detector.

References

  1. 1.
    A. Tsukazaki, A. Ohtomo, T. Onuma, M. Ohtani, T. Makino, M. Sumiya, K. Ohtani, S.F. Chichibu, S. Fuke, Y. Segawa, Nat. Mater. 4, 42 (2005)CrossRefGoogle Scholar
  2. 2.
    D.C. Look, B. Claflin, Y.I. Alivov, S.-J. Park, Phys. Status Solidi A 201, 2203 (2004)CrossRefGoogle Scholar
  3. 3.
    M. Sultan, S. Mumtaz, A. Ali, M.Y. Khan, T. Iqbal, Superlattices Microstruct. 112, 210 (2017)CrossRefGoogle Scholar
  4. 4.
    H. Ohta, M. Hirano, K. Nakahara, H. Maruta, T. Tanabe, M. Kamiya, T. Kamiya, H. Hosono, Appl. Phys. Lett. 83, 1029 (2003)CrossRefGoogle Scholar
  5. 5.
    S.-P. Chang, C.-Y. Lu, S.-J. Chang, Y.-Z. Chiou, C.-L. Hsu, P.-Y. Su, T.-J. Hsueh, Jpn. J. Appl. Phys. 50, 01AJ05 (2011)CrossRefGoogle Scholar
  6. 6.
    M. Warasawa, Y. Watanabe, J. Ishida, Y. Murata, S.F. Chichibu, M. Sugiyama, Jpn. J. Appl. Phys. 52, 021102 (2013)CrossRefGoogle Scholar
  7. 7.
    N. Klochko, V. Kopach, I. Tyukhov, D. Zhadan, K. Klepikova, G. Khrypunov, S. Petrushenko, V. Lyubov, M. Kirichenko, S. Dukarov, Sol. Energy 164, 149 (2018)CrossRefGoogle Scholar
  8. 8.
    X. San, M. Li, D. Liu, G. Wang, Y. Shen, D. Meng, F. Meng, J. Alloy Compd. 739, 260 (2018)CrossRefGoogle Scholar
  9. 9.
    B.O. Jung, Y.H. Kwon, D.J. Seo, D.S. Lee, H.K. Cho, J. Cryst. Growth 370, 314 (2013)CrossRefGoogle Scholar
  10. 10.
    H. Bae, K.H. Lee, K.H. Lee, J.H. Song, S. Im, Phys. Status Solidi (RRL) 6, 475 (2012)CrossRefGoogle Scholar
  11. 11.
    R. Deng, B. Yao, Y. Li, Y. Xu, J. Li, B. Li, Z. Zhang, L. Zhang, H. Zhao, D. Shen, J. Lumin. 134, 240 (2013)CrossRefGoogle Scholar
  12. 12.
    Y. Nakamura, Y. Ishikura, Y. Morita, H. Takagi, S. Fujitsu, Sens. Actuators B 187, 578 (2013)CrossRefGoogle Scholar
  13. 13.
    J. Grochowski, M. Guziewicz, R. Kruszka, M. Borysiewicz, K. Kopałko, A. Piotrowska, in Electronics Technology (ISSE), 2012 35th International Spring Seminar on, IEEE 2012, pp 488–491Google Scholar
  14. 14.
    Y. Wang, X. Wei, L. Chang, D. Xu, B. Dai, J. Pierson, Y. Wang, Vacuum 149, 331 (2018)CrossRefGoogle Scholar
  15. 15.
    Z. Chen, B. Li, X. Mo, S. Li, J. Wen, H. Lei, Z. Zhu, G. Yang, P. Gui, F. Yao, Appl. Phys. Lett. 110, 123504 (2017)CrossRefGoogle Scholar
  16. 16.
    H. Long, L. Ai, S. Li, H. Huang, X. Mo, H. Wang, Z. Chen, Y. Liu, G. Fang, Mater. Sci. Eng. B 184, 44 (2014)CrossRefGoogle Scholar
  17. 17.
    C.-E. Sun, C.-Y. Chen, K.-L. Chu, Y.-S. Shen, C.-C. Lin, Y.-H. Wu, ACS Appl. Mater. Interfaces 7, 6383 (2015)CrossRefGoogle Scholar
  18. 18.
    T. Li, Q. Jie, X. Ni, Y. Wang, X. Zhao, Mater. Res. Innov. 18, S4 (2014)Google Scholar
  19. 19.
    M. Patel, J. Kim, J. Alloy Compd. 729, 796 (2017)CrossRefGoogle Scholar
  20. 20.
    J. Rashid, M. Barakat, N. Salah, S.S. Habib, RSC Adv. 4, 56892 (2014)CrossRefGoogle Scholar
  21. 21.
    J. Chang, H. Kuo, I. Leu, M. Hon, Sensors Actuators B 84, 258 (2002)CrossRefGoogle Scholar
  22. 22.
    V. Assuncao, E. Fortunato, A. Marques, H. Aguas, I. Ferreira, M. Costa, R. Martins, Thin Solid Films 427, 401 (2003)CrossRefGoogle Scholar
  23. 23.
    D. Jiang, J. Qin, X. Wang, S. Gao, Q. Liang, J. Zhao, Vacuum 86, 1083 (2012)CrossRefGoogle Scholar
  24. 24.
    A.M. Akyuzlu, F. Dagdelen, A. Gultek, A. Hendi, F. Yakuphanoglu, Eur. Phys. J. Plus 132, 178 (2017)CrossRefGoogle Scholar
  25. 25.
    H. Fritzsche, in Amorphous and Liquid Semiconductors (Springer, Boston, 1974), pp 221–312CrossRefGoogle Scholar
  26. 26.
    D.F. Swinehart, J. Chem. Edu. 39, 333 (1962)CrossRefGoogle Scholar
  27. 27.
    S. Sharma, C. Periasamy, P. Chakrabarti, Electron. Mater. Lett. 11, 1093 (2015)CrossRefGoogle Scholar
  28. 28.
    C.-T. Sah, R.N. Noyce, W. Shockley, Proceedings of the IRE, 45, 1228 (1957)CrossRefGoogle Scholar
  29. 29.
    M. Brötzmann, U. Vetter, H. Hofsäss, J. Appl. Phys. 106, 063704 (2009)CrossRefGoogle Scholar
  30. 30.
    A. Schenk, U. Krumbein, J. Appl. Phys. 78, 3185 (1995)CrossRefGoogle Scholar
  31. 31.
    K.X. Steirer, K.L. Ou, N.R. Armstrong, E.L. Ratcliff, ACS Appl. Mater. Interfaces 9, 31111 (2017)CrossRefGoogle Scholar
  32. 32.
    M. Aida, R. Bachiri, J Non Cryst. Solids 189, 167 (1995)CrossRefGoogle Scholar
  33. 33.
    M. El-Nahass, K. Abd-El-Rahman, A. Darwish, Microelectron. J. 38, 91 (2007)CrossRefGoogle Scholar
  34. 34.
    K. Kobayashi, M. Yamaguchi, Y. Tomita, Y. Maeda, Thin Solid Films 516, 5903 (2008)CrossRefGoogle Scholar
  35. 35.
    V.B. Raj, A. Nimal, Y. Parmar, M. Sharma, V. Gupta, Sens. Actuators B 166, 576 (2012)Google Scholar
  36. 36.
    A. Echresh, M.A. Abbasi, M.Z. Shoushtari, M. Farbod, O. Nur, M. Willander, Semicond. Sci. Technol. 29, 115009 (2014)CrossRefGoogle Scholar
  37. 37.
    S.-Y. Tsai, M.-H. Hon, Y.-M. Lu, Solid-State Electron. 63, 37 (2011)CrossRefGoogle Scholar
  38. 38.
    K.R. Lee, B.O. Jung, S.W. Cho, K. Senthil, H.K. Cho, J. Mater. Res. 28, 2605 (2013)CrossRefGoogle Scholar
  39. 39.
    H. Ohta, M. Kamiya, T. Kamiya, M. Hirano, H. Hosono, Thin Solid Films 445, 317 (2003)CrossRefGoogle Scholar
  40. 40.
    M. Tyagi, M. Tomar, V. Gupta, J. Mater. Chem. C 2, 2387 (2014)CrossRefGoogle Scholar
  41. 41.
    H.K. Yadav, K. Sreenivas, V. Gupta, Appl. Phys. Lett. 90, 172113 (2007)CrossRefGoogle Scholar
  42. 42.
    H. Long, G. Fang, H. Huang, X. Mo, W. Xia, B. Dong, X. Meng, X. Zhao, Appl. Phys. Lett. 95, 013509 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Ahmed Obaid M. Alzahrani
    • 1
    • 2
  • M. Sh. Abdel-wahab
    • 1
    • 3
  • Meshari Alayash
    • 1
  • M. S. Aida
    • 1
    • 2
  1. 1.Center of NanotechnologyKing Abdulaziz UniversityJeddahSaudi Arabia
  2. 2.Physics Department, Faculty of ScienceKing Abdulaziz UniversityJeddahSaudi Arabia
  3. 3.Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced SciencesBeni-Suef UniversityBeni-SuefEgypt

Personalised recommendations