Effect of ZnO layer thickness upon optoelectrical properties of NiO/ ZnO heterojunction prepared at room temperature
Abstract
In this work, p-NiO/n-ZnO heterostructures were successfully prepared at room temperature using RF sputtering technique. The influence of ZnO layer thickness on the performance of the heterojunction was investigated. The deposited ZnO layers have a hexagonal Wurtzite structure with preferable growth orientations along (002) and (103) for thinner films. Increasing the thickness results in more crystallographic orientation randomness. The current–voltage measurements of the realized heterojunctions showed a clear rectifying behavior. The measured ideality factor varies from 2.5 to 1.6 according to the thickness of ZnO layer. The series resistance of the device is enlarged with increasing ZnO thickness. The deduced parameters from the I–V characteristics suggest that 200 nm is the optimal thickness of the ZnO layer according to our experimental conditions. We attribute the relatively better performance of this thickness to achieving reasonable compensation between serial resistance and ideality factor. The best heterojunction was tested and successfully used as a UV detector.
References
- 1.A. Tsukazaki, A. Ohtomo, T. Onuma, M. Ohtani, T. Makino, M. Sumiya, K. Ohtani, S.F. Chichibu, S. Fuke, Y. Segawa, Nat. Mater. 4, 42 (2005)CrossRefGoogle Scholar
- 2.D.C. Look, B. Claflin, Y.I. Alivov, S.-J. Park, Phys. Status Solidi A 201, 2203 (2004)CrossRefGoogle Scholar
- 3.M. Sultan, S. Mumtaz, A. Ali, M.Y. Khan, T. Iqbal, Superlattices Microstruct. 112, 210 (2017)CrossRefGoogle Scholar
- 4.H. Ohta, M. Hirano, K. Nakahara, H. Maruta, T. Tanabe, M. Kamiya, T. Kamiya, H. Hosono, Appl. Phys. Lett. 83, 1029 (2003)CrossRefGoogle Scholar
- 5.S.-P. Chang, C.-Y. Lu, S.-J. Chang, Y.-Z. Chiou, C.-L. Hsu, P.-Y. Su, T.-J. Hsueh, Jpn. J. Appl. Phys. 50, 01AJ05 (2011)CrossRefGoogle Scholar
- 6.M. Warasawa, Y. Watanabe, J. Ishida, Y. Murata, S.F. Chichibu, M. Sugiyama, Jpn. J. Appl. Phys. 52, 021102 (2013)CrossRefGoogle Scholar
- 7.N. Klochko, V. Kopach, I. Tyukhov, D. Zhadan, K. Klepikova, G. Khrypunov, S. Petrushenko, V. Lyubov, M. Kirichenko, S. Dukarov, Sol. Energy 164, 149 (2018)CrossRefGoogle Scholar
- 8.X. San, M. Li, D. Liu, G. Wang, Y. Shen, D. Meng, F. Meng, J. Alloy Compd. 739, 260 (2018)CrossRefGoogle Scholar
- 9.B.O. Jung, Y.H. Kwon, D.J. Seo, D.S. Lee, H.K. Cho, J. Cryst. Growth 370, 314 (2013)CrossRefGoogle Scholar
- 10.H. Bae, K.H. Lee, K.H. Lee, J.H. Song, S. Im, Phys. Status Solidi (RRL) 6, 475 (2012)CrossRefGoogle Scholar
- 11.R. Deng, B. Yao, Y. Li, Y. Xu, J. Li, B. Li, Z. Zhang, L. Zhang, H. Zhao, D. Shen, J. Lumin. 134, 240 (2013)CrossRefGoogle Scholar
- 12.Y. Nakamura, Y. Ishikura, Y. Morita, H. Takagi, S. Fujitsu, Sens. Actuators B 187, 578 (2013)CrossRefGoogle Scholar
- 13.J. Grochowski, M. Guziewicz, R. Kruszka, M. Borysiewicz, K. Kopałko, A. Piotrowska, in Electronics Technology (ISSE), 2012 35th International Spring Seminar on, IEEE 2012, pp 488–491Google Scholar
- 14.Y. Wang, X. Wei, L. Chang, D. Xu, B. Dai, J. Pierson, Y. Wang, Vacuum 149, 331 (2018)CrossRefGoogle Scholar
- 15.Z. Chen, B. Li, X. Mo, S. Li, J. Wen, H. Lei, Z. Zhu, G. Yang, P. Gui, F. Yao, Appl. Phys. Lett. 110, 123504 (2017)CrossRefGoogle Scholar
- 16.H. Long, L. Ai, S. Li, H. Huang, X. Mo, H. Wang, Z. Chen, Y. Liu, G. Fang, Mater. Sci. Eng. B 184, 44 (2014)CrossRefGoogle Scholar
- 17.C.-E. Sun, C.-Y. Chen, K.-L. Chu, Y.-S. Shen, C.-C. Lin, Y.-H. Wu, ACS Appl. Mater. Interfaces 7, 6383 (2015)CrossRefGoogle Scholar
- 18.T. Li, Q. Jie, X. Ni, Y. Wang, X. Zhao, Mater. Res. Innov. 18, S4 (2014)Google Scholar
- 19.M. Patel, J. Kim, J. Alloy Compd. 729, 796 (2017)CrossRefGoogle Scholar
- 20.J. Rashid, M. Barakat, N. Salah, S.S. Habib, RSC Adv. 4, 56892 (2014)CrossRefGoogle Scholar
- 21.J. Chang, H. Kuo, I. Leu, M. Hon, Sensors Actuators B 84, 258 (2002)CrossRefGoogle Scholar
- 22.V. Assuncao, E. Fortunato, A. Marques, H. Aguas, I. Ferreira, M. Costa, R. Martins, Thin Solid Films 427, 401 (2003)CrossRefGoogle Scholar
- 23.D. Jiang, J. Qin, X. Wang, S. Gao, Q. Liang, J. Zhao, Vacuum 86, 1083 (2012)CrossRefGoogle Scholar
- 24.A.M. Akyuzlu, F. Dagdelen, A. Gultek, A. Hendi, F. Yakuphanoglu, Eur. Phys. J. Plus 132, 178 (2017)CrossRefGoogle Scholar
- 25.H. Fritzsche, in Amorphous and Liquid Semiconductors (Springer, Boston, 1974), pp 221–312CrossRefGoogle Scholar
- 26.D.F. Swinehart, J. Chem. Edu. 39, 333 (1962)CrossRefGoogle Scholar
- 27.S. Sharma, C. Periasamy, P. Chakrabarti, Electron. Mater. Lett. 11, 1093 (2015)CrossRefGoogle Scholar
- 28.C.-T. Sah, R.N. Noyce, W. Shockley, Proceedings of the IRE, 45, 1228 (1957)CrossRefGoogle Scholar
- 29.M. Brötzmann, U. Vetter, H. Hofsäss, J. Appl. Phys. 106, 063704 (2009)CrossRefGoogle Scholar
- 30.A. Schenk, U. Krumbein, J. Appl. Phys. 78, 3185 (1995)CrossRefGoogle Scholar
- 31.K.X. Steirer, K.L. Ou, N.R. Armstrong, E.L. Ratcliff, ACS Appl. Mater. Interfaces 9, 31111 (2017)CrossRefGoogle Scholar
- 32.M. Aida, R. Bachiri, J Non Cryst. Solids 189, 167 (1995)CrossRefGoogle Scholar
- 33.M. El-Nahass, K. Abd-El-Rahman, A. Darwish, Microelectron. J. 38, 91 (2007)CrossRefGoogle Scholar
- 34.K. Kobayashi, M. Yamaguchi, Y. Tomita, Y. Maeda, Thin Solid Films 516, 5903 (2008)CrossRefGoogle Scholar
- 35.V.B. Raj, A. Nimal, Y. Parmar, M. Sharma, V. Gupta, Sens. Actuators B 166, 576 (2012)Google Scholar
- 36.A. Echresh, M.A. Abbasi, M.Z. Shoushtari, M. Farbod, O. Nur, M. Willander, Semicond. Sci. Technol. 29, 115009 (2014)CrossRefGoogle Scholar
- 37.S.-Y. Tsai, M.-H. Hon, Y.-M. Lu, Solid-State Electron. 63, 37 (2011)CrossRefGoogle Scholar
- 38.K.R. Lee, B.O. Jung, S.W. Cho, K. Senthil, H.K. Cho, J. Mater. Res. 28, 2605 (2013)CrossRefGoogle Scholar
- 39.H. Ohta, M. Kamiya, T. Kamiya, M. Hirano, H. Hosono, Thin Solid Films 445, 317 (2003)CrossRefGoogle Scholar
- 40.M. Tyagi, M. Tomar, V. Gupta, J. Mater. Chem. C 2, 2387 (2014)CrossRefGoogle Scholar
- 41.H.K. Yadav, K. Sreenivas, V. Gupta, Appl. Phys. Lett. 90, 172113 (2007)CrossRefGoogle Scholar
- 42.H. Long, G. Fang, H. Huang, X. Mo, W. Xia, B. Dong, X. Meng, X. Zhao, Appl. Phys. Lett. 95, 013509 (2009)CrossRefGoogle Scholar