Effects of excimer laser annealing energy on the properties of thermally evaporated tin antimony sulfide thin films and TEM characterization of the powder

  • N. Khemiri
  • D. AbdelkaderEmail author
  • A. Jebali
  • F. Antoni
  • M. Kanzari


Tin antimony sulfide (TAS) is one of the most promising compounds for the next generation of optoelectronic and thin film photovoltaic devices. TAS material was synthesized by a solid-state reaction using earth-abundant tin, antimony and sulfur elements. The structural properties of the TAS powder were investigated by transmission electron microscopy (TEM). X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM) and selected electron diffraction (SAED) were employed to establish the crystalline nature of the powder. The TEM observations demonstrated that the powder was polycrystalline in nature with rod-shaped structure. The effects of excimer laser annealing (ELA) at different pulse energies on the structural, morphological and optical properties of thermally evaporated TAS films were investigated. X-ray diffraction (XRD), scanning electron microscopy (SEM) and Raman spectroscopy measurements showed that the films annealed by an excimer laser of 248 nm were amorphous for weak energy densities whereas the sample irradiated with 111 mJ/cm− 2 was polycrystalline with a preferential \({\text{(}}\overline {{\text{2}}} {\text{1}}\overline {{\text{3}}} {\text{)}}\) orientation. The ELA effects on the optical properties were also studied in the wavelength range 300–1800 nm by using UV–Vis–NIR spectroscopy. The absorption coefficient of all samples in the fundamental absorption region is higher than 104 cm−1. We also found that the optical band gap decreases from 2.04 to 1.84 eV after irradiating the thin films under different laser energy densities.


  1. 1.
    H.K. Lin, K.C. Cheng, J.C. Huang, Effects of laser annealing parameters on optical and electrical properties of ITO/metallic glass alloy Bi-layer films. Nanoscale Res. Lett. 10, 274 (2015)CrossRefGoogle Scholar
  2. 2.
    S. Zhao, Y. Hua, R. Chen, J. Zhang, P. Ji, Structural and electrical studies on ZnO-based thin films by laser irradiation. J. Nanotechnol. (2016). CrossRefGoogle Scholar
  3. 3.
    N. Ali, R. Ahmed, B. Haq, A. Shaari, R. Hussain, S. Goumri-Said, Anovel approach for the synthesis of tin-antimony sulfide thin films for photovoltaic application. Sol. Energy 113, 25–33 (2015) 25.CrossRefGoogle Scholar
  4. 4.
    F. Tlig, M. Gannouni, I. Ben Assaker, R. Chtourou, New investigation on the physical and electrochemical properties of (TAS) thin films grown by electrodeposition technique. J. Photochem. Photobiol. 335, 26–35 (2017)CrossRefGoogle Scholar
  5. 5.
    H. Lu, Y. Tu, X. Lin, B. Fang, D. Luo, A. Laaksonen, Effects of laser irradiation on the structure and optical properties of ZnO thin films. Mater. Lett. 64, 2072–2075 (2010)CrossRefGoogle Scholar
  6. 6.
    K. Kima, S. Kim, S.Y. Lee, Effect of excimer laser annealing on the properties of ZnO thin film prepared by sol-gel method. Curr. Appl. Phys. 12, 585–588 (2012)CrossRefGoogle Scholar
  7. 7.
    C.-Y. Tsayn, M.-C. Wang, Structural and optical studies on sol-gel derived ZnO thin films by excimer laser annealing. Ceram. Int. 39, 469–474 (2013)CrossRefGoogle Scholar
  8. 8.
    S.O. Elhamali, W.M. Cranton, N. Kalfagiannis, X. Hou, R. Ranson, D.C. Koutsogeorgis, Enhanced electrical and optical properties of room temperature deposited aluminium doped Zinc Oxide (AZO) thin films by excimer laser annealing. Opt. Lasers Eng. 80, 45–51 (2016)CrossRefGoogle Scholar
  9. 9.
    C.-F. Ding, W.-T. Hsiao, H.-T. Young, Effect on the electro-optical properties of transparent conducting aluminum doped zinc oxide thin films using low-temperature ultraviolet laser annealing. J. Mater. Sci.: Mater. Electron. 28, 15647–15656 (2017)Google Scholar
  10. 10.
    A. Samavati, Z. Samavati, A.F. Ismail, M.H.D. Othman, M.A. Rahman, A.K. Zulhairun, I.S. Amiri, Structural, optical and electrical evolution of Al and Ga co-doped ZnO/SiO2/glass thin film: role of laser power density. RSC Adv. 7, 35858–35868 (2017)CrossRefGoogle Scholar
  11. 11.
    M.I. Khan, A. Ali, Effect of laser irradiation on the structural, morphological and electrical properties of polycrystalline TiO2 thin films. Results Phys. 7, 3455–3458 (2017)CrossRefGoogle Scholar
  12. 12.
    M. Behera, S. Behera, R. Naik, Optical band gap tuning by laser-induced Bi diffusion into As2Se3 film probed by spectroscopic techniques. RSC Adv. 7, 18428–18437 (2017)CrossRefGoogle Scholar
  13. 13.
    A. Jebali, N. Khemiri, F. Aousgi, M. Ben Rabeh, M. Kanzari, Structural, morphological and optical properties of the sulfosalt material SnSb4S7 thin films. Mater. Sci. Semicond. Process. 27, 1057–1064 (2014)CrossRefGoogle Scholar
  14. 14.
    D. Abdelkader, M. Ben Rabeh, N. Khemiri, M. Kanzari, Investigation on optical properties of SnxSbySz sulfosalts thin films. Mater. Sci. Semicond. Process. 21, 14–19 (2014)CrossRefGoogle Scholar
  15. 15.
    A. Jebali, N. Khemiri, M. Kanzari, The effect of annealing in N2 atmosphere on the physical properties of SnSb4S7 thin films. J. Alloys Compd. 673, 38–46 (2016)CrossRefGoogle Scholar
  16. 16.
    A. N. Ali, R. Hussain, W.N. Ahmed, N.M. Wan Shamsuri, R. Abdel-Salam, Khenata, Fabrication and characterization of 150 nm tin antimony sulfide thin films, a promising window layer material for homo-junction solar cells. Appl. Phys. A 123, 282 (2017)CrossRefGoogle Scholar
  17. 17.
    R.G. Sotelo Marquina, T.G. Sanchez, N.R. Mathews, X. Mathew, Vacuum coated Sb2S3 thin films: thermal treatment and the evolution of its physical properties. Mater. Res. Bull. 90, 285–294 (2017)CrossRefGoogle Scholar
  18. 18.
    M.I. Medina-Montes, Z. Montiel-González, N.R. Mathews, X. Mathew, The influence of film deposition temperature on the subsequent post-annealing and crystallization of sputtered Sb2S3 thin films. J. Phys. Chem. Solids 111, 182–189 (2017)CrossRefGoogle Scholar
  19. 19.
    J. Huang, C. Yan, K. Sun, F. Liu, H. Sun, A. Pu, X. Liu, M. Green, X. Hao, Boosting the kesterite Cu2ZnSnS4 solar cells performance by diode laser annealing. Sol. Energy Mater. Sol. Cells 175, 71–76 (2018)CrossRefGoogle Scholar
  20. 20.
    D. Abdelkader, A. Jebali, A. Larbi, A. Harizi, M. Ben Rabeh, N. Khemiri, F. Antoni, M. Kanzari, Synthesis, characterization, structural and optical absorption behavior of SnxSbySz powders. Adv. Powder Technol. 27, 734–741 (2016)CrossRefGoogle Scholar
  21. 21.
    S. Shaji, L.V. Garcia, S.L. Loredo, B. Krishnan, J.A. Aguilar Martinez, T.K. Das Roy, D.A. Avellaneda, Antimony sulfide thin films prepared by laser assisted chemical bath deposition. Appl. Surf. Sci. 393, 369–376 (2017)CrossRefGoogle Scholar
  22. 22.
    L.F. Avila, A. Pradel, S.J.L. Ribeiro, Y. Messaddeq, M. Nalin, Laser irradiation and thermal treatment inducing selective crystallization in Sb2O3–Sb2S3 glassy films. Phys. B: Condens. Matter 458, 67–72 (2015)CrossRefGoogle Scholar
  23. 23.
    N. Kishore, S. Mukherjee, Synthesis, and characterization of mixed ferrites. Int. J. Sci. Res. Publ. 4, 1–5 (2014)Google Scholar
  24. 24.
    Q. Xu, R.D. Hong, H.L. Huang, Z.F. Zhang, M.K. Zhang, X.P. Chen, Zh.Y. Wu, Laser annealing effect on optical and electrical properties of Al doped ZnO films. Opt. Laser Technol. 45, 513–517 (2013)CrossRefGoogle Scholar
  25. 25.
    S.M. Pawar, A.V. Moholkar, I.K. Kim, S.W. Shin, J.H. Moon, J.I. Rhee, J.H. Kim, Effect of laser incident energy on the structural, morphological and optical properties of Cu2ZnSnS4 (CZTS) thin films. Curr. Appl. Phys. 10, 565–569 (2010)CrossRefGoogle Scholar
  26. 26.
    S. Han, X.H. JI, Q.L. An, Y.M. Lu, P.J. Cao, W.J. Liu, Y.X. Zeng, F. Jia, X.K. Liu, D.L. Zhu, Effect of laser energy on crystal structure and UV response characteristics of mix-phase MgZnO thin film deposited by PLD and the fabrication of high signal/noise ratio solar-blind UV detector based on mix-phase MgZnO at lower voltage. J. Mater. Chem. C 5, 11472–11480 (2017)CrossRefGoogle Scholar
  27. 27.
    B.-S. Lee, J.R. Abelsona, Investigation of the optical and electronic properties of Ge2Sb2Te5 phase change material in its amorphous, cubic, and hexagonal phases, J. Appl. Phys. 97, 093509 (2005)CrossRefGoogle Scholar
  28. 28.
    P. Pradhan, R. Naik, N. Das, A.K. Panda, Band gap tuning in As40Se53Sb07 thin films by 532 nm laser irradiation: an optical investigation by spectroscopic techniques. Opt. Mater. 75, 699–709 (2018)CrossRefGoogle Scholar
  29. 29.
    S. Sharbati, S.H. Keshmiri, J.T. McGoffin, R. Geisthardt, Improvement of CIGS thin-film solar cell performance by optimization of Zn(O,S) buffer layer parameters. Appl. Phys. A 118, 1259–1265 (2015)CrossRefGoogle Scholar
  30. 30.
    E. Talebian, M. Talebian, A general review on the derivation of Clausius–Mossotti relation. Optik 124, 2324–2326 (2013)CrossRefGoogle Scholar
  31. 31.
    R. Swanepoel, Determination of the thickness and optical constants of amorphous silicon. J. Phys E: Sci. Instrum. 16, 1214 (1983)CrossRefGoogle Scholar
  32. 32.
    A.K. George, R.N. Singh, Electronic polarizability of light crude oil from optical and dielectric studies. J. Phys.: Conf. Ser. 869, 012016 (2017)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • N. Khemiri
    • 1
    • 2
  • D. Abdelkader
    • 1
    Email author
  • A. Jebali
    • 1
  • F. Antoni
    • 3
  • M. Kanzari
    • 1
    • 4
  1. 1.Université Tunis El Manar, Ecole Nationale d’Ingénieurs de Tunis, Laboratoire de Photovoltaïque et Matériaux Semi-conducteursTunisTunisia
  2. 2.Université de Tunis El Manar, Institut Préparatoire aux Etudes d’Ingénieurs El ManarTunisTunisia
  3. 3.ICube-Laboratoire des Sciences de l’Ingénieur, de l’Informatique et de l’Imagerie, Université de Strasbourg-CNRSStrasbourg CedexFrance
  4. 4.Université de Tunis, Institut Préparatoire aux Etudes d’Ingénieurs de Tunis-IPEITMontfleuryTunisia

Personalised recommendations