Few-layers MoS2 sensitized Ag–TiO2 nanocomposite thin film for enhancing photocatalytic activity

  • Jianguo LvEmail author
  • Rui Miao
  • Miao ZhangEmail author
  • Gang He
  • Min Zhao
  • Bo Yu
  • Wei Wang
  • Bi Li
  • Zhaoqi Sun


The novel few-layers MoS2 sensitized Ag–TiO2 were prepared through hydrothermal method, photoreduction method and spin-coating method, respectively. The microstructure, surface morphology, chemical composition and ultraviolet–visible absorbance of the samples were investigated systematically. The results indicated that the Ag nanoparticles and few-layers MoS2 were deposited successfully on the surface of TiO2 NRAs. The visible photocatalytic activity was estimated by degradation of methylene blue solution. The results indicated that the photocatalytic properties of MoS2/Ag–TiO2 was larger than pure TiO2 NRAs and Ag–TiO2. The significantly increased photocatalytic properties was attributed to the stronger visible light capture capability and the enhanced electron–hole pairs separation.



This work was supported by National Natural Science Foundation of China (Nos. 51701001, 51102072, 51472003, 51572002), Natural Science Foundation of Anhui Higher Education Institution of China (Nos. KJ2015ZD32, KJ2017A924, KJ2017A002), Doctor Scientific Research Fund of Anhui University (No. J01001927), Youth Core Teacher Fund of Anhui University (No. J01005111) and Foundation of Co-operative Innovation Research Center for Weak Signal-Detecting Materials and Devices Integration Anhui University (Nos. Y01008411, WRXH201703).


  1. 1.
    A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37 (1972)CrossRefGoogle Scholar
  2. 2.
    T. Ali, Y.M. Hunge, A. Venkatraman, UV assisted photoelectrocatalytic degradation of reactive red 152 dye using spray deposited TiO2 thin films. J. Mater. Sci. Mater. Electron. 29, 1209–1215 (2017)CrossRefGoogle Scholar
  3. 3.
    Y.M. Hunge, A.A. Yadav, V.L. Mathe, Oxidative degradation of phthalic acid using TiO2 photocatalyst. J. Mater. Sci. Mater. Electron. 29, 6183–6187 (2018)CrossRefGoogle Scholar
  4. 4.
    Y.-C. Pu, G. Wang, K.-D. Chang, Y. Ling, Y.-K. Lin, B.C. Fitzmorris, C.-M. Liu, X. Lu, Y. Tong, J.Z. Zhang, Y.-J. Hsu, Y. Li, Au nanostructure-decorated TiO2 nanowires exhibiting photoactivity across entire UV-visible region for photoelectrochemical water splitting. Nano Lett. 13, 3817–3823 (2013)CrossRefGoogle Scholar
  5. 5.
    M. Ni, M.K.H. Leung, D.Y.C. Leung, K. Sumathy, A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renew. Sustain. Energy Rev. 11, 401–425 (2007)CrossRefGoogle Scholar
  6. 6.
    C. Liu, F. Shang, G. Pan, F. Wang, Z. Zhou, W. Gong, Z. Zi, Y. Wei, X. Chen, J. Lv, G. He, M. Zhang, X. Song, Z. Sun, Preparation and photocatalytic activity of MgxZn1–xO thin films on silicon substrate through sol-gel process. Appl. Surf. Sci. 305, 753–759 (2014)CrossRefGoogle Scholar
  7. 7.
    W. Gong, G. Pan, F. Shang, F. Wang, Z. Zhou, C. Liu, M. Zhao, Z. Zi, Y. Wei, J. Lv, X. Chen, G. He, M. Zhang, X. Song, Z. Sun, Effect of ethylene glycol monomethyl ether ratio in mixed solvent on surface morphology, wettability and photocatalytic properties of ZnO thin films. J. Mater. Sci. Mater. Electron. 25, 2948–2956 (2014)CrossRefGoogle Scholar
  8. 8.
    Y.M. Hunge, A.A. Yadav, V.L. Mathe, Ultrasound assisted synthesis of WO3-ZnO nanocomposites for brilliant blue dye degradation. Ultrason. Sonochem. 45, 116–122 (2018)CrossRefGoogle Scholar
  9. 9.
    Y.M. Hunge, M.A. Mahadik, V.S. Mohite, S.S. Kumbhar, N.G. Deshpande, K.Y. Rajpure, A.V. Moholkar, P.S. Patil, C.H. Bhosale, Photoelectrocatalytic degradation of methyl blue using sprayed WO3 thin films. J. Mater. Sci. Mater. Electron. 27, 1629–1635 (2016)CrossRefGoogle Scholar
  10. 10.
    Y.M. Hunge, A.A. Yadav, M.A. Mahadik, V.L. Mathe, C.H. Bhosale, A highly efficient visible-light responsive sprayed WO3/FTO photoanode for photoelectrocatalytic degradation of brilliant blue. J. Taiwan Inst. Chem. Eng. 85, 273–281 (2018)CrossRefGoogle Scholar
  11. 11.
    Y.M. Hunge, A.A. Yadav, M.A. Mahadik, R.N. Bulakhe, J.J. Shim, V.L. Mathe, C.H. Bhosale, Degradation of organic dyes using spray deposited nanocrystalline stratified WO3/TiO2 photoelectrodes under sunlight illumination. Opt. Mater. 76, 260–270 (2018)CrossRefGoogle Scholar
  12. 12.
    Z. Yin, Z. Wang, Y. Du, X. Qi, Y. Huang, C. Xue, H. Zhang, Full solution-processed synthesis of all metal oxide-based tree-like heterostructures on fluorine-doped tin oxide for water splitting. Adv. Mater. 24, 5374–5378 (2012)CrossRefGoogle Scholar
  13. 13.
    T. Ohno, M. Akiyoshi, T. Umebayashi, K. Asai, T. Mitsui, M. Matsumura, Preparation of S-doped TiO2 photocatalysts and their photocatalytic activities under visible light. Appl. Catal. A Gen. 265, 115–121 (2004)CrossRefGoogle Scholar
  14. 14.
    J. Wang, D.N. Tafen, J.P. Lewis, Z. Hong, A. Manivannan, M. Zhi, M. Li, N. Wu, Origin of photocatalytic activity of nitrogen-doped TiO2 nanobelts. J. Am. Chem. Soc. 131, 12290–12297 (2009)CrossRefGoogle Scholar
  15. 15.
    J.G. Yu, J.F. Xiong, B. Cheng, S.W. Liu, Fabrication and characterization of Ag-TiO2 multiphase nanocomposite thin films with enhanced photocatalytic activity. Appl. Catal. B Environ. 60, 211–221 (2005)CrossRefGoogle Scholar
  16. 16.
    H. Eom, J.-Y. Jung, Y. Shin, S. Kim, J.-H. Choi, E. Lee, J.-H. Jeong, I. Park, Strong localized surface plasmon resonance effects of Ag/TiO2 core-shell nanowire arrays in UV and visible light for photocatalytic activity. Nanoscale 6, 226–234 (2014)CrossRefGoogle Scholar
  17. 17.
    Y. Yang, J. Wen, J. Wei, X. Rui, S. Jing, C. Pan, Polypyrrole-decorated Ag-TiO2 nanofibers exhibiting enhanced photocatalytic activity under visible-light illumination. ACS Appl. Mater. Interfaces 5, 6201 (2013)CrossRefGoogle Scholar
  18. 18.
    J. Tao, Z. Gong, G. Yao, Y. Cheng, M. Zhang, J. Lv, S. Shi, G. He, X. Chen, Z. Sun, Enhanced photocatalytic and photoelectrochemical properties of TiO2 nanorod arrays sensitized with CdS nanoplates. Ceram. Int. 42, 11716–11723 (2016)CrossRefGoogle Scholar
  19. 19.
    Y. Wang, W. Yang, X. Chen, J. Wang, Y. Zhu, Photocatalytic activity enhancement of core-shell structure g-C3N4@TiO2 via controlled ultrathin g-C3N4 layer. Appl. Catal. B Environ. 220, 337–347 (2018)CrossRefGoogle Scholar
  20. 20.
    A. Ali, W.-C. Oh, Synthesis of Ag2Se-graphene-TiO2 nanocomposite and analysis of photocatalytic activity of CO2 reduction to CH3OH. Bull. Mater. Sci. 40, 1319–1328 (2017)CrossRefGoogle Scholar
  21. 21.
    X.-B. Xiang, Y. Yu, W. Wen, J.-M. Wu, Construction of hierarchical Ag@TiO2@ZnO nanowires with high photocatalytic activity. New J. Chem. 42, 265–271 (2018)CrossRefGoogle Scholar
  22. 22.
    C. Ma, X. Wang, H. Luo, D. Zhang, Synthesis of Ag/TiO2 core-shell nanowires with enhanced stability of photocatalytic activity. J. Mater. Sci. Mater. Electron. 28, 10715–10719 (2017)CrossRefGoogle Scholar
  23. 23.
    X. Liu, L. Chen, Q. Liu, J. He, K. Li, W. Yu, J.-P. Ao, K.-W. Ang, Band alignment of atomic layer deposited TiO2/multilayer MoS2 interface determined by X-ray photoelectron spectroscopy. J. Alloys Compd. 698, 141–146 (2017)CrossRefGoogle Scholar
  24. 24.
    Q. Xiang, J. Yu, M. Jaroniec, Synergetic effect of MoS2 and graphene as cocatalysts for enhanced photocatalytic H2 production activity of TiO2 nanoparticles. J. Am. Chem. Soc. 134, 6575–6578 (2012)CrossRefGoogle Scholar
  25. 25.
    F. Zhao, Y. Rong, J. Wan, Z. Hu, Z. Peng, B. Wang, MoS2 quantum dots@TiO2 nanotube composites with enhanced photoexcited charge separation and high-efficiency visible-light driven photocatalysis. Nanotechnology 29, 105403 (2018)CrossRefGoogle Scholar
  26. 26.
    L. Zheng, S. Han, H. Liu, P. Yu, X. Fang, Hierarchical MoS2 nanosheet@TiO2 nanotube array composites with enhanced photocatalytic and photocurrent performances. Small 12, 1527–1536 (2016)CrossRefGoogle Scholar
  27. 27.
    W. Zhou, Z. Yin, Y. Du, X. Huang, Z. Zeng, Z. Fan, H. Liu, J. Wang, H. Zhang, Synthesis of few-layer MoS2 nanosheet-coated TiO2 nanobelt heterostructures for enhanced photocatalytic activities. Small 9, 140–147 (2013)CrossRefGoogle Scholar
  28. 28.
    F. Xu, Y. Yuan, D. Wu, M. Zhao, Z. Gao, K. Jiang, Synthesis of ZnO/Ag/graphene composite and its enhanced photocatalytic efficiency. Mater. Res. Bull. 48, 2066–2070 (2013)CrossRefGoogle Scholar
  29. 29.
    Y. Sun, H. Lin, C. Wang, Q. Wu, X. Wang, M. Yang, Morphology-controlled synthesis of TiO2/MoS2 nanocomposites with enhanced visible-light photocatalytic activity. Inorg. Chem. Front. 5, 145–152 (2018)CrossRefGoogle Scholar
  30. 30.
    F. Ye, H. Li, H. Yu, S. Chen, X. Quan, Hydrothermal fabrication of few-layer MoS2 nanosheets within nanopores on TiO2 derived from MIL-125(Ti) for efficient photocatalytic H2 evolution. Appl. Surf. Sci. 426, 177–184 (2017)CrossRefGoogle Scholar
  31. 31.
    Y.M. Liang, N. Guo, L.L. Li, R.Q. Li, G.J. Ji, S.C. Gan, Facile synthesis of Ag/ZnO micro-flowers and their improved ultraviolet and visible light photocatalytic activity. N. J. Chem. 40, 1587–1594 (2016)CrossRefGoogle Scholar
  32. 32.
    J. Zhao, P. Zhang, J. Fan, J. Hu, G. Shao, Constructing 2D layered MoS2 nanosheets-modified Z-scheme TiO2/WO3 nanofibers ternary nanojunction with enhanced photocatalytic activity. Appl. Surf. Sci. 430, 466–474 (2018)CrossRefGoogle Scholar
  33. 33.
    C.D. Gu, C. Cheng, H.Y. Huang, T.L. Wong, N. Wang, T.Y. Zhang, Growth and photocatalytic activity of dendrite-like ZnO@Ag heterostructure nanocrystals. Cryst. Growth Des. 9, 3278–3285 (2009)CrossRefGoogle Scholar
  34. 34.
    Y. Zheng, L. Zheng, Y. Zhan, X. Lin, Q. Zheng, K. Wei, Ag/ZnO heterostructure nanocrystals: synthesis, characterization, and photocatalysis. Inorg. Chem. 46, 6980–6986 (2007)CrossRefGoogle Scholar
  35. 35.
    W. Teng, Y. Wang, H.H. Huang, X. Li, Y. Tang, Enhanced photoelectrochemical performance of MoS2 nanobelts-loaded TiO2 nanotube arrays by photo-assisted electrodeposition. Appl. Surf. Sci. 425, 507–517 (2017)CrossRefGoogle Scholar
  36. 36.
    J. Lv, W. Gong, K. Huang, J. Zhu, F. Meng, Effect of annealing temperature on photocatalytic activity of ZnO thin films prepared by sol–gel method. Superlatt. Microstruct. 50, 98–106 (2011)CrossRefGoogle Scholar
  37. 37.
    Z. Zhou, F. Shang, G. Pan, F. Wang, C. Liu, W. Gong, Z. Zi, Y. Wei, J. Lv, X. Chen, Enhanced photocatalytic activity of Mg0.05 Zn0.95O thin films prepared by sol–gel method through a cycle. J. Mater. Sci. Mater. Electron. 25, 2053–2059 (2014)CrossRefGoogle Scholar
  38. 38.
    Y.X. Lei, J.P. Zhou, Q.U. Hassan, J.Z. Wang, One-step synthesis of NiTe2 nanorods coated with few-layers MoS2 for enhancing photocatalytic activity. Nanotechnology 28, 495602 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Electronic and Information EngineeringHefei Normal UniversityHefeiChina
  2. 2.Co-operative Innovation Research Center for Weak Signal-Detecting Materials and Devices IntegrationAnhui UniversityHefeiChina
  3. 3.School of Physics and Material ScienceAnhui UniversityHefeiChina

Personalised recommendations