Advertisement

Effect of spark plasma sintering on microstructure and electrical properties of ZnO-based varistors

  • Faiçal Kharchouche
  • Saâd Belkhiat
Article
  • 25 Downloads

Abstract

Conditions for the elaboration of varistors by spark plasma sintering (SPS) are investigated, using 70 nm zinc oxide nano-particles. For this purpose, the system constituted of zinc oxide, bismuth oxide and other metal oxide is used. Material sintering has been performed by SPS at various temperatures and dwell times. Determination of the microstructure and chemical composition of the as-prepared ceramics are characterized by scanning electron microscopy and X-ray diffraction analysis. Micro-structural analysis revealed the presence of ZnO, spinel and bismuth rich phases. ZnO based Varistor samples sintered within climb speeds 100 and 400 °C/min are compared. The nonlinear electrical characteristics, current–voltage, are measured. The breakdown voltage of the varistors strongly depends on grain sizes. The results show that the best varistors are obtained by SPS at sintering temperatures ranging from 900 to 1200 °C.

Notes

Acknowledgements

F. Kharchouche thanks the PROFAS 537/ENS/FR2012-2013 and 35/ENS/FR/2013-2014 Program for its financial support. I thank the laboratory director LMCPA and her team, University of Valenciennes and the research laboratories of the University Ferhat Abbas Setif I for their help.

References

  1. 1.
    D. Xu, X. Shi, X. Cheng, J. Yang, Y. Fan, Trans Nonferrous Met Soc China 20, 2303 (2010)CrossRefGoogle Scholar
  2. 2.
    K. Yuan, G. Li, L. Zheng, L. Cheng, L. Meng, Z. Yao, Q. Yin, J. Alloys Compd. 503, 507 (2010)CrossRefGoogle Scholar
  3. 3.
    D. Xu, L. Shi, Z. Wu, Q. Zhong, X. Wu, J. Eur. Ceram. Soc. 29, 1789 (2009)CrossRefGoogle Scholar
  4. 4.
    L. Duan, Y. Li, P. Cui, L. Chen, Y. Qin, G.J. Xu, Z.X. Li, Q. Wang, Y.L. Li, Ceram. Int. 34, 1697 (2008)CrossRefGoogle Scholar
  5. 5.
    C. Zhang, Y. Hu, W. Lu, D. Zhou, J. Eur. Ceram. Soc. 22, 61 (2002)CrossRefGoogle Scholar
  6. 6.
    J. Zhang, S. Cao, R. Zhang, L. Yu, C. Jing, Curr. Appl. Phys. 5, 381 (2005)CrossRefGoogle Scholar
  7. 7.
    P. Durán, F. Capel, J. Tartaj, C. Moure, J. Eur. Ceram. Soc. 22, 67 (2002)CrossRefGoogle Scholar
  8. 8.
    M. Peiteado, J.F. Fernández, A.C. Caballero, J. Eur. Ceram. Soc. 27, 3867 (2007)CrossRefGoogle Scholar
  9. 9.
    E. Savarya, S. Marinela, F. Gascoina, Y. Kinemuchi, J. Pansiot, R. Retoux, J. Alloys Compd. 509, 6163–6169 (2011)CrossRefGoogle Scholar
  10. 10.
    M. Wang, C. Yao, N. Zhang, J. Mater. Process. Technol. 202, 406 (2008)CrossRefGoogle Scholar
  11. 11.
    A.B. Glot, I.A. Skuratovsky, Mater. Chem. Phys. 99, 487 (2006)CrossRefGoogle Scholar
  12. 12.
    Y. Zhang, Theses, Oxide and Metallic Precursor Powders for Superconducting Bi2Sr2CaCu2Ox/Ag Round Wires, Raleigh, North Carolina (2015)Google Scholar
  13. 13.
    A.B. Glot, R. Bulpett, A.I. Ivon, P.M. Gallegos-Acevedo, Physica B 457, 108 (2015)CrossRefGoogle Scholar
  14. 14.
    R. Parra, J.E. Rodríguez-Páez, J.A. Varela, M.S. Castro, Ceram. Int. 34, 563 (2008)CrossRefGoogle Scholar
  15. 15.
    M.A.A. Santana, F.S.N. dos Santos, V.C. Sousa, Q.S.H. Chu, Measurement 41, 1105 (2008)CrossRefGoogle Scholar
  16. 16.
    J. Li, S. Luo, M.A. Alim, Mater. Lett. 60, 720 (2006)CrossRefGoogle Scholar
  17. 17.
    J.Q. Sun, W.P. Chen, W. Xiang, W.C. You, Y. Zhuang, H.L.W. Chan, Ceram. Int. 33, 1137 (2007)CrossRefGoogle Scholar
  18. 18.
    C. de Salles, T.A. Nogueira, E.T.W. Neto, M.L.B. Martinez, A.A.A. de Queiroz, Electr. Power Syst. Res. 134, 145–151 (2016)CrossRefGoogle Scholar
  19. 19.
    X.S. Yang, Y. Wang, L. Dong, Mater. Chem. Phys. 86, 253 (2004)CrossRefGoogle Scholar
  20. 20.
    Y. Wang, X.S. Yang, Z.L. Liu, K.L. Yao, Mater. Lett. 58, 1017 (2004)CrossRefGoogle Scholar
  21. 21.
    E. Savarya, S. Marinela, F. Gascoina, Y. Kinemuchib, J. Pansiotc, R.R. Peculiar, J. Alloys Compd. 509, 6163–6169 (2011)CrossRefGoogle Scholar
  22. 22.
    V.V. Deshpande, M.M. Patil, V. Ravi, Ceram. Int. 32, 85 (2006)CrossRefGoogle Scholar
  23. 23.
    F.M. Filho, A.Z. Simões, A. Ries, L. Perazolli, E. Longo, J.A. Varela, Ceram. Int. 32, 283 (2006)CrossRefGoogle Scholar
  24. 24.
    S. Bernik, S. Maček, B. Ai, J. Eur. Ceram. Soc. 21, 1875–1878 (2001)CrossRefGoogle Scholar
  25. 25.
    T.K. Gupta, J. Am. Ceram. 73, 1817 (1990)CrossRefGoogle Scholar
  26. 26.
    L.M. Levinson, H.R. Philipp, Bull. Am. Ceram. Soc. 65, 639 (1986)Google Scholar
  27. 27.
    M.A. Ashraf, A.H. Bhuiyan, M.A. Hakim, M.T. Hossain, Mater. Sci. Eng. B 176, 855 (2011)CrossRefGoogle Scholar
  28. 28.
    G. Chen, J. Li, Y. Yang, C. Yuan, C. Zhou, Mater. Res. Bull. 50, 141 (2014)CrossRefGoogle Scholar
  29. 29.
    M.A. Ashraf, A.H. Bhuiyan, M.A. Hakim, M.T. Hossain, Physica B 405, 3770 (2010)CrossRefGoogle Scholar
  30. 30.
    C.M. Wang, J.F. Wang, H.C. Chen, W.B. Su, G.Z. Zang, P. Qi, Mater. Chem. Phys. 92, 118 (2005)CrossRefGoogle Scholar
  31. 31.
    N. Yongvanich, P. Jivaganont, F. Sakasuphalerk, P. Huayhongthong, W. Suwanteerangkul, J. Met. Mater. Miner. 20, 127 (2010)Google Scholar
  32. 32.
    W. Yang, D. Zhou, G. Yin, R. Wang, Y. Zhang, J. Mater. Sci. Technol. 21, 183 (2005)CrossRefGoogle Scholar
  33. 33.
    D. Xu, B. Jiang, L. Jiao, F. Cui, H. Xu, Y. Yang, R. Yu, X. Cheng, Trans. Nonferrous Met. Soc. China 22, s110 (2012)CrossRefGoogle Scholar
  34. 34.
    C.K. Lianga, C.C. Tsaib, Sens. Actuators A 121, 443 (2005)CrossRefGoogle Scholar
  35. 35.
    W. Water, Y.S. Yan, Thin Solid Films 515, 6992 (2007)CrossRefGoogle Scholar
  36. 36.
    M. Maddaiah, A.G.S. Kumar, L. Obulapathi, T.S. Sarmash, K.C.B. Naidu, D.J. Rani, T.S. Rao, Dig. J. Nanomater. Biostruct. 10, 155 (2015)Google Scholar
  37. 37.
    K. Guentuerkuen, Ö Toplan, Ceramics 50, 225 (2006)Google Scholar
  38. 38.
    H. Naghib-zadeh, C. Glitzky, W. Oesterle, T. Rabe, J. Eur. Ceram. Soc. 31, 589 (2011)CrossRefGoogle Scholar
  39. 39.
    A. Wedig, Theses, Oxygen Exchange Kinetics of the Potential Solid Oxide Fuel Cell Cathode Material (Bi,Sr)(Co,Fe)O3-δ (Max-Planck-Institut für Festkörperforschung, Stuttgart, 2013)Google Scholar
  40. 40.
    C.W. Nahm, J. Mater. Sci. Mater. Electron. 24, 78 (2013)Google Scholar
  41. 41.
    X. Zhao, X. Yang, Q. Li, J. He, J. Hu, Compos. Sci. Technol. 150, 187–193 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratoire Dosage Analyse Caractérisation Haute Résolution, Département de l’électrotechnique, Faculté de technologieUniversité Ferhat Abbas Sétif 1SétifAlgeria

Personalised recommendations