Advertisement

Effect of molar ratio on the microstructure, dielectric and multiferroic properties of Ni0.5Zn0.5Fe2O4-Pb0.8Zr0.2TiO3 nanocomposite

  • Ruicheng Xu
  • Zhenhua Wang
  • Rongli Gao
  • Shilong Zhang
  • Qianwei Zhang
  • Zhendong Li
  • Chunyue Li
  • Gang Chen
  • Xiaoling Deng
  • Wei Cai
  • Chunlin Fu
Article
  • 59 Downloads

Abstract

In the present work, Ni0.5Zn0.5Fe2O4/Pb0.8Zr0.2TiO3 nanocomposite with different molar ratio (1: 2, 1: 3, 1: 5, 1: 7) was prepared by hydrothermal method and sol–gel method, and the effect of molar ratio on the microstructure, dielectric and multiferroic properties was systematically investigated. X-ray diffraction and transmission electron microscopy analysis reveal inhomogeneous structures with isolated ferrite embedded into the ferroelectric (FE) matrix. Both the dielectric constant and the loss decrease firstly, and then increase with the increase of molar ratio, which is caused by the different microstructures and the formation of impurity phase. The dielectric resonance peak decreases firstly and then increases with increasing molar ratio, which is based on FE phase transition of Pb0.8Zr0.2TiO3 tuned by the magnetic phase. Among them, the nanocomposite with the molar ratio of 1:5 shows better FE properties and the lowest leakage current density, the saturation polarization, remnant polarization and coercive field are 3.74, 1.51 µC/cm2 and 7.93 kV/cm, respectively, at the measure frequency of 2 kHz. Unexpectedly, the magnetization first decreases and then increase with the increase of molar ratio, this abnormal behavior may be the result of the interface coupling effect between magnetic and FE phases. Also, this high sensitivity of multiferroic properties towards the molar ratio between magnetic and FE phases can be applied to the application in magnetoelectric devices.

Notes

Acknowledgements

The present work has been supported by the National Natural Science Foundation of China (Grant Nos. 51372283, 51402031, 61404018, 11647036), the Natural Science Foundation of Chongqing (CSTC2018jcyjAX0416, CSTC2015jcyjA50003, CSTC2015jcyjA50015, CSTC2016jcyjA0175, CSTC2016jcyjA0349), the Scientific and Technological Research Program of Chongqing Municipal Education Commission (KJ1501310, KJ1501318), the Excellent Talent Project in University of Chongqing (Grant No. 2017-35), the Science and Technology Innovation Project of Social Undertakings and Peoples Livelihood Guarantee of Chongqing (Grant No. cstc2017shmsA0192), the Program for Innovation Teams in University of Chongqing, China (Grant No. CXTDX201601032), the Foundation of Chongqing University of Science & Technology (CK2015B05, CK2015Z13), the Latter Foundation Project of Chongqing University of Science & Technology (CKHQZZ2008002), the Scientific & Technological Achievements Foundation Project of Chongqing University of Science & Technology (CKKJCG2016328) and the Postgraduate technology innovation project of Chongqing University of Science & Technology (YKJCX1720205).

References

  1. 1.
    M.M. Vopson, Crit Rev Solid State Sci. 40, 223–250 (2015)CrossRefGoogle Scholar
  2. 2.
    S. Dong, J.M. Liu, S.W. Cheong, Adv. Phys. 64, 519–626 (2015)CrossRefGoogle Scholar
  3. 3.
    D.Z. Montanher, V.F. Freitas, J.R.D. Pereira, J. Appl. Phys. 113, 393 (2013)CrossRefGoogle Scholar
  4. 4.
    F.V. Coeeal, B.D. Bueno, F.D. Carrillo, J. Appl. Phys. 99, 107 (2006)Google Scholar
  5. 5.
    R.L. Gao, C.L. Fu, W. Cai, G. Chen, X.L. Deng, H.R. Zhang, J.R. Sun, B.G. Shen, Sci. Rep. 6, 20330 (2016)CrossRefGoogle Scholar
  6. 6.
    G. Sreenivasulu, M. Popov, A.F. Chavez, Appl. Phys. Lett. 104, 2449–2622 (2014)Google Scholar
  7. 7.
    R.L. Gao, H.W. Yang, J.R. Sun, Y.G. Zhao, B.G. Shen, Appl. Phys. Lett. 104, 031906 (2014)CrossRefGoogle Scholar
  8. 8.
    T. Woldu, B. Raneesh, B.K. Hazra, J. Alloys Compd. 691, 644–652 (2017)CrossRefGoogle Scholar
  9. 9.
    B.R. Fu, K. Gao, Y. Yang, P. Wang, Europhys. Lett. 112, 27002 (2015)CrossRefGoogle Scholar
  10. 10.
    V. Folen, G. Rado, E. Stalder, Phys. Rev. Lett. 6, 607 (1961)CrossRefGoogle Scholar
  11. 11.
    R.L. Gao, Q.M. Zhang, Z.Y. Xu, Z.H. Wang, W. Cai, G. Chen, X.L. Deng, X.L. Cao, X.D. Luo, C.L. Fu, Nanoscale 10, 11750–11759 (2018)CrossRefGoogle Scholar
  12. 12.
    S.G. Lu, Z.K. Xu, Y.P. Wang, S.S. Guo, J. Electroceram. 21, 398–400 (2008)CrossRefGoogle Scholar
  13. 13.
    R.L. Gao, L. Bai, Z.Y. Xu, Q.M. Zhang, Z.H. Wang, W. Cai, G. Chen, X.L. Deng, C.L. Fu, Adv. Electron. Mater. 4, 18300 (2018)Google Scholar
  14. 14.
    K.K. Patankar, S.A. Kanade, D.S. Padalkar, B.K. Chougule, Phys. Lett. A 361, 472–477 (2007)CrossRefGoogle Scholar
  15. 15.
    H. Yang, H. Wang, L. He, L. Shui, X. Yao, J. Appl. Phys. 108, 1–6 (2010)Google Scholar
  16. 16.
    L.N. Su, P. Liu, Y. He, J. Alloys. Compds. 494, 330–335 (2010)CrossRefGoogle Scholar
  17. 17.
    R.A. Candeia, M.I.B. Bernardi, E. Longo, I.M.G. Santos, A.G. Souza, Mater. Lett. 58, 569–572 (2004)CrossRefGoogle Scholar
  18. 18.
    S.B. Reddy, P.P. Singh, N. Raghu, J. Mater. Sci. 37, 929–934 (2002)CrossRefGoogle Scholar
  19. 19.
    R. Suntako, P. Laoratanakul, N. Traiphol, Ceram. Int. 35, 1227–1233 (2009)CrossRefGoogle Scholar
  20. 20.
    H. Zheng, J. Wang, S.E. Lofland, Science 303, 661–663 (2004)CrossRefGoogle Scholar
  21. 21.
    Y. Zhang, H. Sun, W. Chen, Ceram. Int. 41, 8520–8532 (2015)CrossRefGoogle Scholar
  22. 22.
    Q. Chen, P.Y. Du, L. Jin, W.J. Weng, G.R. Han, Appl. Phys. Lett. 91(1-022912-3), 022912 (2007)CrossRefGoogle Scholar
  23. 23.
    J.P. Zhou, H.C. He, Y. Zhang, C.Y. Deng, Z. Shi, C.W. Nan, Appl. Phys. A89, 553–558 (2007)CrossRefGoogle Scholar
  24. 24.
    A. Testino, L. Mitoseriu, V. Buscaglia, M.T. Buscaglia, I. Pallecchi, A.S. Albuquerque, V. Calzona, D. Marr’e, A.S. Siri, P. Nanni, J. Eur. Ceram. Soc. 26, 3031–3036 (2006)CrossRefGoogle Scholar
  25. 25.
    C. Nayek, K.K. Sahoo, P. Murugavel, Mater. Res. Bull. 48, 1308–1311 (2013)CrossRefGoogle Scholar
  26. 26.
    R. Li, F.Z. Rong, L. Zheng, Compon. Mater. 33, 23–28 (2014)Google Scholar
  27. 27.
    M. Popov, G. Sreenivasulu, V.M. Petrov, AIP Adv. 4, 031101–031382 (2014)CrossRefGoogle Scholar
  28. 28.
    L. Zhang, J. Zhai, W. Mo, et al. Ferroelectrics 406, 213–220 (2010)CrossRefGoogle Scholar
  29. 29.
    R.Y. Zheng, J. Wang, S. Ramakrishna, J. Appl. Phys. 104, 034106 (2008)CrossRefGoogle Scholar
  30. 30.
    Y. Liu, Y. Wu, D. Li, J. Mater. Sci. Mater. Electron. 24, 1900–1904 (2013)CrossRefGoogle Scholar
  31. 31.
    R. Sharma, P. Pahuja, R.P. Tandon, Ceram. Int. 40, 9027–9036 (2014)CrossRefGoogle Scholar
  32. 32.
    R. Sharma, V. Singh, R.K. Kotnala, R.P. Tandon, Mater. Chem. Phys. 160, 447–455 (2015)CrossRefGoogle Scholar
  33. 33.
    R. Grigalaitis, M.M.V. Petrović, J.D. Bobić, Ceram. Int. 40, 6165–6170 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Ruicheng Xu
    • 1
    • 2
  • Zhenhua Wang
    • 1
    • 2
  • Rongli Gao
    • 1
    • 2
  • Shilong Zhang
    • 1
    • 2
  • Qianwei Zhang
    • 1
    • 2
  • Zhendong Li
    • 1
    • 2
  • Chunyue Li
    • 1
    • 2
  • Gang Chen
    • 1
    • 2
  • Xiaoling Deng
    • 1
    • 2
  • Wei Cai
    • 1
    • 2
  • Chunlin Fu
    • 1
    • 2
  1. 1.School of Metallurgy and Materials EngineeringChongqing University of Science and TechnologyChongqingChina
  2. 2.Chongqing Key Laboratory of Nano/Micro Composite Materials and DevicesChongqingChina

Personalised recommendations