Photovoltaic properties of nanostructured copper sulfide incorporated silicon rich composites

  • Anant M. Kute
  • Sandeep A. WaghuleyEmail author


In the present experimentation, the photovoltaic properties of CuS incorporated SiO2 nanocomposites were investigated. The nanocomposite between CuS and SiO2 were prepared by solid state diffusion method. During the process of solid state diffusion, silicic acid was used as source of silicon. The prepared composites characterized by X-ray diffractions, scanning electron microscopy, ultraviolet–visible spectrophotometers, Raman spectroscopy, photoluminescence spectroscopy and thermal analysis and photovoltaic measurements. IV characteristics of PV cell shows that performance of cell is sensitive to concentration of CuS in composite. The optimized power conversion efficiency was 1.11% found to be for 15 wt% CuS loaded SiO2 composite having fill factor 0.189 under the power incidence of 0.0104 W/m2.



Authors are very much thankful to the Head, Department of Physics, Sant Gadge Baba Amravati University, Amravati, India, for providing necessary facilities.


  1. 1.
    T. Saga, Advances in crystalline silicon solar cell technology for industrial mass production. NPG Asia Mater. 2, 96–102 (2010)CrossRefGoogle Scholar
  2. 2.
    H. Rao, W. Sun, S. Ye, W. Yan, Y. Li, H. Peng, Z. Liu, Z. Bian, C. Huang, Solution-processed CuS NPs as an inorganic hole-selective contact material for inverted planar perovskite solar cells. ACS Appl. Mater. Interfaces 8, 7800–7805 (2016)CrossRefGoogle Scholar
  3. 3.
    M. Kim, A. Ochirbat, H.J. Lee, CuS/CdS quantum dot composite sensitizer and its applications to various TiO2 mesoporous film-based solar cell devices. Langmuir 31, 7609–7615 (2015)CrossRefGoogle Scholar
  4. 4.
    X. Xu, J. Bullock, L.T. Schelhas, E.Z. Stutz, J.J. Fonseca, M. Hettick, V.L. Pool, K.F. Tai, M.F. Toney, X. Fang, A. Javey, L.H. Wong, J.W. Ager, Chemical bath deposition of p-type transparent, highly conducting (CuS)x:(ZnS)1–x nanocomposite thin films and fabrication of Si heterojunction solar cells. Nano Lett. 16, 1925–1932 (2016)CrossRefGoogle Scholar
  5. 5.
    Y. Wu, C. Wadia, W. Ma, B. Sadtler, A.P. Alivisatos, Synthesis and photovoltaic application of copper(I) sulfide nanocrystals. Nano Lett. 8, 2551–2555 (2008)CrossRefGoogle Scholar
  6. 6.
    L. Isac, I. Popovici, A. Enesca, A. Duta, Copper sulfide (CuxS) thin films as possible p-type absorbers in 3D solar cells. Energy Procedia 2, 71–78 (2010)CrossRefGoogle Scholar
  7. 7.
    M. Sabet, M. Salavati-Niasari, F. Davar, Facile one-step microwave to prepare CuInS2/CuS nanocomposite for solar cells. IET Micro Nano Lett. 6, 904–908 (2011)CrossRefGoogle Scholar
  8. 8.
    F. Ghribi, A. Alyamani, Z. Ben Ayadi, K. Djessas, L.E.L. Mir, Study of CuS thin films for solar cell applications sputtered from nanoparticles synthesised by hydrothermal route. Energy Procedia 84, 197–203 (2015)CrossRefGoogle Scholar
  9. 9.
    M.A. Sangamesha, K. Pushpalatha, G.L. Shekar, S. Shamsundar, Preparation and characterization of nanocrystalline CuS thin films for dye-sensitized solar cells. ISRN Nanomater. 2013, 829430–829438 (2013)CrossRefGoogle Scholar
  10. 10.
    K.R. Nemade, S.A. Waghuley, Highly responsive carbon dioxide sensing by graphene/Al2O3 quantum dots composites at low operable temperature. Indian J. Phys. 88, 577–583 (2014)CrossRefGoogle Scholar
  11. 11.
    K.R. Nemade, S.A. Waghuley, Band gap engineering of CuS nanoparticles for artificial photosynthesis. Mater. Sci. Semicond. Process. 39, 781–785 (2015)CrossRefGoogle Scholar
  12. 12.
    K.R. Nemade, R.V. Barde, S.A. Waghuley, Photocatalytic study of alumina–zirconia ceramic nanocomposite synthesized by spray pyrolysis. Ceram. Int. 41, 4836–4840 (2015)CrossRefGoogle Scholar
  13. 13.
    S. Ou, Q. Xie, D. Ma, J. Liang, X. Hu, W. Yu, Y. Qian, A precursor decomposition route to polycrystalline CuS nanorods. Mater. Chem. Phys. 94, 460–466 (2005)CrossRefGoogle Scholar
  14. 14.
    J. Serrano, A. Cantarero, M. Cardona, N. Garro, R. Lauck, R.E. Tallman, T.M. Ritter, B.A. Weinstein, Raman scattering in β-Zn. Phys. Rev. B 69, 014301–014307 (2004)CrossRefGoogle Scholar
  15. 15.
    S.Y. Wang, W. Wang, Z.-H. Lu, Asynchronous-pulse ultrasonic spray pyrolysis deposition of CuS (x = 1, 2) thin films. Mater. Sci. Eng. B103, 184–188 (2003)CrossRefGoogle Scholar
  16. 16.
    A. Milekhin, L. Sveshnikova, T. Duda, N. Surovtsev, S. Adichtchev, L. Ding, D.R.T. Zahn, Vibrational spectra of quantum dots formed by Langmuir–Blodgett technique, J. Vac. Sci. Technol. B 28, C5E22–C5E26 (2010)CrossRefGoogle Scholar
  17. 17.
    M. Nafees, M. Ikram, S. Alia, Thermal behavior and decomposition of copper sulfide nanomaterial synthesized by aqueous sol method. Dig. J. Nanomater. Biostruct. 10, 635–641 (2015)Google Scholar
  18. 18.
    T. Salmi, M. Bouzguenda, A. Gastli, A. Masmoudi, MATLAB/simulink based modelling of solar photovoltaic cell. Int. J. Renew. Energy Res. 2, 213–218 (2012)Google Scholar
  19. 19.
    M. Seifi, A. Soh, N. Izzrib. A. Wahab, M.K.B. Hassan, A comparative study of PV models in Matlab/Simulink. Int. J. Electr. Robot. Electron. Commun. Eng. 7, 97–102 (2013)Google Scholar
  20. 20.
    G.L. Kabongo, P.S. Mbule, G.H. Mhlongo, B.M. Mothudi, K.T. Hillie, M.S. Dhlamini, Photoluminescence quenching and enhanced optical conductivity of P3HT-derived Ho3+-doped ZnO nanostructures. Nanoscale Res. Lett. 11, 418–426 (2016)CrossRefGoogle Scholar
  21. 21.
    I. Mora-Sero, S. Gimenez, T. Moehl, F. Fabregat-Santiago, T. Lana-Villareal, R. Gomez, J. Bisquert, Factors determining the photovoltaic performance of a CdSe quantum dot sensitized solar cell: the role of the linker molecule and of the counter electrode. Nanotechnology 19, 424007–442014 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Engineering PhysicsShri Sant Gadge Baba College of Engineering and TechnologyBhusawalIndia
  2. 2.Department of PhysicsSant Gadge Baba Amravati UniversityAmravatiIndia

Personalised recommendations