IR protection property and color performance of TiO2/Cu/TiO2 coated polyester fabrics

  • Linghui Peng
  • Shouxiang JiangEmail author
  • Ronghui GuoEmail author
  • Jiangtao Xu
  • Xiaoting Li
  • Dagang Miao
  • Yuxiang Wang
  • Songmin Shang


Both humans and objects can emit infrared (IR) wavelengths which generate thermal emissions that can be detected with an IR camera. Therefore, highly IR reflective materials have been the subject of interest recently, for example, in achieving IR stealth. In this work, IR reflective coatings on polyester fabric in the form of a titanium dioxide/copper/titanium dioxide (TiO2/Cu/TiO2; TCT) sandwich-like structure are fabricated by using magnetron sputtering. The coated fabric samples are then examined by using an energy dispersive X-ray detector, a scanning electron microscope and an X-ray diffractometer. The reflection of IR wavelengths which range from 8 to 14 µm of the TCT coated fabric is evaluated. The bending stiffness, and mechanical and adhesion strengths of the coated fabric samples are also investigated. The results show that the TCT sandwich-like structure on the polyester fabric sputtered for 30 min with Cu which results in a Cu film of 200 nm in thickness is observed to have the maximum reflection of IR wavelengths. The color of the TCT coated polyester fabric samples sputtered for 5, 10, 20, and 30 min with Cu is green, yellow, brown and purple, respectively. The TCT coated fabric therefore has potential applications as IR protection textiles for military purposes.


  1. 1.
    V.C. Malshe, A.K. Bendiganavale, Infrared reflective inorganic pigments. Recent Pat. Chem. Eng. 1, 67–79 (2008)CrossRefGoogle Scholar
  2. 2.
    J. Mohelnikova, Materials for reflective coatings of window glass applications. Construct. Build. Mater. 23(5), 1993–1998 (2009)CrossRefGoogle Scholar
  3. 3.
    R. Levinson, H. Akbari, J.C. Reilly, Cooler tile-roofed buildings with near-infrared-reflective non-white coatings. Build. Environ. 42(7), 2591–2605 (2007)CrossRefGoogle Scholar
  4. 4.
    H.J. Zhi, Y. Seokho, T. Fatima, H.W. Douglas, S.M. Theresa, Conformal dual-band near perfectly absorbing mid infrared metamaterial coating. ACS Nano 5(6), 4641–4647 (2011)CrossRefGoogle Scholar
  5. 5.
    T. Chow, C. Li, Z. Lin, Innovative solar windows for cooling-demand climate. Solar Energy Mater. Solar Cells 94(2), 212–220 (2010)CrossRefGoogle Scholar
  6. 6.
    P. Wang, X.Z. Zhang, Z.Y. Wei, W.Y. Lv, L. Liu, W.X. Zhang, Preparation and properties of water-based solar-reflective coatings with color hollow ceramic microsphere. Mater. Sci. Forum 687, 734–738 (2011)CrossRefGoogle Scholar
  7. 7.
    H. Yu et al., Low infrared emissivity of polyurethane/Cu composite coatings. Appl. Surf. Sci. 255(12), 6077–6081 (2009)CrossRefGoogle Scholar
  8. 8.
    S.M.A. Durrani et al., Dielectric/Ag/dielectric coated energy-efficient glass windows for warm climates. Energy Build. 36(9), 891–898 (2004)CrossRefGoogle Scholar
  9. 9.
    B.E. Yoldas, T. O’Keefe, Deposition of optically transparent IR reflective coatings on glass. Appl. Opt. 23(20), 3638–3643 (1984)CrossRefGoogle Scholar
  10. 10.
    D. Miao et al., Highly transparent and infrared reflective AZO/Ag/AZO multilayer film prepared on PET substrate by RF magnetron sputtering. Vacuum 106, 1–4 (2014)CrossRefGoogle Scholar
  11. 11.
    J.G. Lu et al., Transparent conductive and near-infrared reflective Ga-doped ZnO/Cu bilayer films grown at room temperature. J. Vac. Sci. Technol. 29(3), 03A115 (2011)CrossRefGoogle Scholar
  12. 12.
    D. Miao et al., Transparent conductive and infrared reflective AZO/Cu/AZO multilayer film prepared by RF magnetron sputtering. J. Mater. Sci. 25(12), 5248–5254 (2014)Google Scholar
  13. 13.
    Y.P. Wang et al., Transparent conductive and near-infrared reflective Cu-based Al-doped ZnO multilayer films grown by magnetron sputtering at room temperature. Appl. Surf. Sci. 257(14), 5966–5971 (2011)CrossRefGoogle Scholar
  14. 14.
    J. Choi, J.H. Kim, Improvement of near infrared reflectance of TiO2/SiO2/TiO2 multilayer structure for energy efficiency window applications. Sci. Adv. Mater. 8(1), 201–204 (2016)CrossRefGoogle Scholar
  15. 15.
    M.J. Powell et al., Intelligent multifunctional VO2/SiO2/TiO2 coatings for self-cleaning, energy-saving window panels. Chem. Mater. 28(5), 1369–1376 (2016)CrossRefGoogle Scholar
  16. 16.
    Z. Yu, X. Dia, H. Luo, Cotton modified with silver-nanowires/ polydopamine for a wearable thermal management device. RSC Adv. 6, 67771–67777 (2016)CrossRefGoogle Scholar
  17. 17.
    P.C. Hsu et al., Personal thermal management by metallic nanowire-coated textile. Nano Lett. 15(1), 365–371 (2015)CrossRefGoogle Scholar
  18. 18.
    K.S. Chou, Y.C. Lu, The application of nanosized silver colloids in far infrared low-emissive coating. Thin Solid Film. 515(18), 7217–7221 (2007)CrossRefGoogle Scholar
  19. 19.
    G. Wu, D. Yu, Preparation and characterization of a new low infrared-emissivity coating based on modified aluminum. Prog. Org. Coat. 76(1), 107–112 (2013)CrossRefGoogle Scholar
  20. 20.
    Y. Sun et al., Near-infrared absorption carboxylated chlorophyll-a derivatives for biocompatible dye-sensitized hydrogen evolution. Int. J. Hydrog. Energy 42(24), 15731–15738 (2017)CrossRefGoogle Scholar
  21. 21.
    C. Yang et al., Design of the alkali-metal-doped WO3 as a near-infrared shielding material for smart window. Ind. Eng. Chem. Res. 53(46), 17981–17988 (2014)CrossRefGoogle Scholar
  22. 22.
    D. Zhu et al., Preparation and infrared emissivity of ZnO: Al (AZO) thin films. Appl. Surf. Sci. 255(12), 6145–6148 (2009)CrossRefGoogle Scholar
  23. 23.
    H. Kocer et al., Thermal tuning of infrared resonant absorbers based on hybrid gold-VO2 nanostructures. Appl. Phys. Lett. 106(16), 161104 (2015)CrossRefGoogle Scholar
  24. 24.
    M. Fejdyś, K. Olszewska, S. Kaczmarczyk, G. Owczarek, Coatings manufactured using magnetron sputtering technology to protect against infrared radiation for use in firefighter helmets. Pol. J. Chem. Technol. 18(3), 50–58 (2016)CrossRefGoogle Scholar
  25. 25.
    G.K. Dalapati et al., Color tunable low cost transparent heat reflector using copper and titanium oxide for energy saving application. Sci. Rep. 6, 20182 (2016)CrossRefGoogle Scholar
  26. 26.
    P. Misra, V. Ganeshan, N. Agrawal, Low temperature deposition of highly transparent and conducting Al-doped ZnO films by RF magnetron sputtering. J. Alloys Compd. 725, 60–68 (2017)CrossRefGoogle Scholar
  27. 27.
    Y. Wu, L. Zhang, G. Min, H. Yu, B. Gao, H. Liu, S. Xing, T. Pang, Surface functionalization of nanostructured LaB6-coated Poly Trilobal fabric by magnetron sputtering. Appl. Surf. Sci. 384, 413–418 (2016)CrossRefGoogle Scholar
  28. 28.
    T.P. Dhakal, C.Y. Peng, R.R. Tobias, R. Dasharathy, C.R. Westgate, Characterization of a CZTS thin film solar cell grown by sputtering method. Sol. Energy 100, 23–30 (2014)CrossRefGoogle Scholar
  29. 29.
    D. Miao et al., Fabrication of porous and amorphous TiO2 thin films on flexible textile substrates. Ceram. Int. 41(7), 9177–9182 (2015)CrossRefGoogle Scholar
  30. 30.
    B. Fang et al., Highly efficient omnidirectional structural color tuning method based on dielectric-metal-dielectric structure. Appl. Opt. 56(4), C175–C180 (2017)CrossRefGoogle Scholar
  31. 31.
    C.J. Liang et al., Rapidly fabrication of plasmonic structural color thin films through AAO process in an alkaline solution. Surf. Coat. Technol. 319, 170–181 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Linghui Peng
    • 1
  • Shouxiang Jiang
    • 1
    Email author
  • Ronghui Guo
    • 2
    Email author
  • Jiangtao Xu
    • 1
  • Xiaoting Li
    • 1
  • Dagang Miao
    • 3
  • Yuxiang Wang
    • 1
  • Songmin Shang
    • 1
  1. 1.Institute of Textiles and ClothingThe Hong Kong Polytechnic UniversityHong KongChina
  2. 2.College of Light Industry, Textile and Food EngineeringSichuan UniversityChengduChina
  3. 3.Industrial Research Institute of Nonwovens and Technical Textiles, College of Textiles and ClothingQingdao UniversityQingdaoChina

Personalised recommendations