Advertisement

Investigation of Sb65Se35/Sb multilayer thin films for high speed and high thermal stability application in phase change memory

  • Xuan Guo
  • Yifeng Hu
  • Qingqian Chou
  • Tianshu Lai
  • Xiaoqin Zhu
Article
  • 50 Downloads

Abstract

Sb65Se35/Sb multilayer composite thin films were prepared by depositing the Sb65Se35 and Sb layers alternately. In situ resistance vs. temperature was measured and the crystallization temperature increased with thickening the Sb65Se35 layer in Sb65Se35/Sb thin films. The data retention temperature of 10 years increased greatly from 14 °C of pure Sb to 103 °C of [Sb65Se35(3 nm)/Sb(7 nm)]3. Also, the band gap was broadened and the surface became smoother. X-ray diffraction patterns for the studied materials revealed that Sb and Sb2Se3 phases coexisted in Sb65Se35/Sb thin films. Absorbing the advantages of the fast phase change for Sb, the [Sb65Se35(1 nm)/Sb(9 nm)]5 multilayer thin film had an ultrafast amorphization speed of 1.6 ns. The results indicated that Sb65Se35/Sb multilayer thin film was a potential phase change material for fast speed and good stability.

Notes

Acknowledgements

This work was supported by National Natural Science Foundation of China (No. 11774438) and Natural Science Foundation of Jiangsu Province (BK20151172) and Changzhou Science and Technology Bureau (CJ20160028) and sponsored by Qing Lan Project and the Opening Project of State Key Laboratory of Silicon Materials (SKL2017-04) and the Opening Project of Key Laboratory of Microelectronic Devices & Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences and Postgraduate Research.

References

  1. 1.
    A.M. Shakra, J. Alloy. Compd. 699, 722 (2017)CrossRefGoogle Scholar
  2. 2.
    X.X. Sun, M. Ehrhardt, A. Lotnyk, P. Lorenz, E. Thelander, J.W. Gerlach, T. Smausz, U. Decker, B. Rauschenbach, Sci. Rep. 6, 28246 (2016)CrossRefGoogle Scholar
  3. 3.
    L. Zheng, X.Q. Zhu, L.J. Zhai, Y.F. Hu, H. Zou, B. Liu, M.X. Pei, Z.T. Song, Eur. Phys. J. Appl. Phys. 77, 30102 (2017)CrossRefGoogle Scholar
  4. 4.
    L. Zheng, X.M. Gu, L.G. Ma, X.S. Wu, X.Q. Zhu, Y.X. Sui, J. Appl. Phys. 119, 044901 (2016)CrossRefGoogle Scholar
  5. 5.
    S. Sandhu, S. Kumar, R. Thangaraj, Phase Transit. 5, 1 (2017)Google Scholar
  6. 6.
    Q. Wang, B. Liu, Y.Y. Xia, Y.H. Zheng, R.R. Huo, Q. Zhang, S.N. Song, Y. Cheng, Z.T. Song, S.L. Feng, Appl. Phys. Lett. 107, 1450 (2015)Google Scholar
  7. 7.
    Z. Min, M.J. Xia, F. Rao, X.B. Li, L.C. Wu, X.L. Ji, S.L. Lv, Z.T. Song, S.L. Feng, H.B. Sun, S.B. Zhang, Nat. Commun. 5, 4086 (2014)CrossRefGoogle Scholar
  8. 8.
    X.Q. Zhu, Y.F. Hu, L. Yuan, Y.X. Sui, J.Z. Xue, D.H. Shen, J.H. Zhang, S.N. Song, Z.T. Song, J. Electron. Mater. 44, 3322 (2015)CrossRefGoogle Scholar
  9. 9.
    K. Ren, F. Rao, Z.T. Song, S.L. Lv, Y. Cheng, L.C. Wu, C. Peng, X.L. Zhou, M.J. Xia, B. Liu, S.L. Feng, Appl. Phys. Lett. 100, 052105 (2012)CrossRefGoogle Scholar
  10. 10.
    Y.F. Hu, M.C. Sun, S.N. Song, Z.T. Song, J.W. Zhai, Integr. Ferroelectr. 140, 8 (2012)CrossRefGoogle Scholar
  11. 11.
    P.Z. W, Y.F. Hu, T. Wen, X.Y. Liu, T.S. Lai, J.W. Zhai, SPIE 9818, 981803 (2016)Google Scholar
  12. 12.
    W.H. Wu, Y.F. Hu, X.Q. Zhu, Y.X. Sui, Y. Li, L. Zheng, H. Zou, Y.M. Sun, S.N. Song, Z.T. Song, J. Mater. Sci. Mater. Electron. 27, 2183 (2016)CrossRefGoogle Scholar
  13. 13.
    Y.F. Hu, X.Y. Feng, S.M. Li, T.S. Lai, S.N. Song, Z.T. Song, J.W. Zhai, Scripta Mater. 93, 4 (2014)CrossRefGoogle Scholar
  14. 14.
    H. Zou, X.Q. Zhu, Y.F. Hu, Y.X. Sui, L. Zheng, W.H. Wu, L.J. Zhai, J.Z. Xue, Z.T. Song, J. Mater. Sci. Mater. Electron. 28, 1 (2016)Google Scholar
  15. 15.
    M.C. Sun, Y.F. Hu, B. Shen, J.W. Zhai, S.N. Song, Z.T. Song, Integr. Ferroelectr. 140, 1 (2012)CrossRefGoogle Scholar
  16. 16.
    Z.Y. Li, Y.F. Hu, T. Wen, J.W. Zhai, T.S. Lai, J. Appl. Phys. 117, 135703 (2015)CrossRefGoogle Scholar
  17. 17.
    Y. Lu, Y.F. Hu, Y. Li, X.Q. Zhu, H. Zou, L. Shen, Z.T. Song, J. Non-Cryst. Solids 432, 505 (2016)CrossRefGoogle Scholar
  18. 18.
    H.P. You, Y.F. Hu, X.Q. Zhu, H. Zou, S.N. Song, Z.T. Song, J. Mater. Sci. Mater. Electron. 28, 10199 (2017)CrossRefGoogle Scholar
  19. 19.
    Z.F. He, P.Z. Wu, R.R. Liu, J.W. Zhai, T.S. Lai, S.N. Song, Z.T. Song, CrystEngComm 18, 1230 (2016)CrossRefGoogle Scholar
  20. 20.
    H. Zou, Y.F. Hu, X.Q. Zhu, Z.T. Song, RSC Adv. 7, 31110 (2017)CrossRefGoogle Scholar
  21. 21.
    Y.F. Hu, Z.F. He, J.W. Zhai, P.Z. Wu, T.S. Lai, S.N. Song, Z.T. Song, Appl. Phys. A 121, 1125 (2015)CrossRefGoogle Scholar
  22. 22.
    Y.F. Hu, X.Y. Feng, S.M. Li, T.S. Lai, S.N. Song, Z.T. Song, J.W. Zhai, Appl. Phys. Lett. 103, 152107 (2013)CrossRefGoogle Scholar
  23. 23.
    Y.F. Hu, H. Zou, J.H. Zhang, J.Z. Xue, Y.X. Sui, W.H. Wu, Y. Li, X.Q. Zhu, S.N. Song, Z.T. Song, Appl. Phys. Lett. 107, 263105 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Mathematics and PhysicsJiangsu University of TechnologyChangzhouChina
  2. 2.State-Key Laboratory of Optoelectronic Materials and Technology, School of PhysicsSun Yat-Sen UniversityGuangzhouChina
  3. 3.State Key Laboratory of Silicon MaterialsZhejiang UniversityHangzhouChina
  4. 4.Key Laboratory of Microelectronic Devices & Integrated Technology, Institute of MicroelectronicsChinese Academy of SciencesBeijingChina

Personalised recommendations