Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 17, pp 15241–15248 | Cite as

Synthesis and characterization of microencapsulated paraffin with TiO2 shell as thermal energy storage materials

  • Xiaochun Ma
  • Yanjun Liu
  • Han Liu
  • Bin Xu
  • Jing Zhou
  • Fan Xiao
Article
  • 115 Downloads

Abstract

In this study, the microencapsulated phase change material with paraffin as core and inorganic TiO2 shell was successfully synthesized by in situ hydrolysis and polycondensation of tetrabutyl titanate in a nonaqueous oil-in-water emulsion using formamide as aqueous phase. The chemical compositions, crystalline structure, morphology and microstructure of paraffin@TiO2 microcapsules were characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray diffractometer (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The thermal properties and thermal stability of the microcapsules were measured by differential scanning calorimeter (DSC) and thermo-gravimetric analyzer (TGA). FT-IR and XRD results proved that there was no chemical reaction between paraffin core and TiO2 shell material. SEM images indicated that the paraffin@TiO2 microcapsules showed a regular spherical shape with the average diameters of 2–5 µm with a smooth shell. SEM and TEM studies also confirmed the paraffin was fully encapsulated with TiO2. DSC analysis indicated that the microcapsules had similar phase change behaviors as those of pure paraffin. Typical sample froze at 52.24 °C with a latent heat of 110.42 J g−1 and melt at 60.41 °C with a latent heat of 107.54 J g−1, of which the encapsulation ratio achieved to 54.58%. TGA results indicated the thermal stability of paraffin was improved by the protection of TiO2 shell through the encapsulation.

Notes

Acknowledgements

This wok was financially supported by the National Natural Science Foundation of China (No. 51201152) and the Natural Science Foundation of Zhejiang Province (Nos. Y4110505, LY15E020010).

References

  1. 1.
    R.K. Sharma, P. Ganesan, V.V. Tyagi, H.S.C. Metselaar, S.C. Sandaran, Energy Convers. Manag. 95, 193 (2015)CrossRefGoogle Scholar
  2. 2.
    M. You, X.X. Zhang, J.P. Wang, X.C. Wang, J. Mater. Sci. 44, 3141 (2009)CrossRefGoogle Scholar
  3. 3.
    A. Sarı, C. Alkan, D.K. Döğüşcü, Ç Kızıl, Sol. Energy 115, 195 (2015)CrossRefGoogle Scholar
  4. 4.
    M.M. Farid, A.M. Khudhair, S.A.K. Razack, S. Al-Hallaj, Energy Convers. Manag. 45, 1597 (2004)CrossRefGoogle Scholar
  5. 5.
    G. Li, B. Zhang, X. Li, Y. Zhou, Q. Sun, Q. Yun, Sol. Energy Mater. Sol. Cells 126, 51 (2014)CrossRefGoogle Scholar
  6. 6.
    L. Hui, G. Fang, L. Xu, J. Mater. Sci. 45, 1672 (2010)CrossRefGoogle Scholar
  7. 7.
    F. Tang, L. Liu, G. Alva, Y. Jia, G. Fang, Sol. Energy Mater. Sol. Cells 160, 1 (2017)CrossRefGoogle Scholar
  8. 8.
    X. Cheng, G. Li, G. Yu, Y. Li, J. Han, J. Mater. Sci. 52, 12370 (2017)CrossRefGoogle Scholar
  9. 9.
    C.Y. Zhao, G.H. Zhang, Renew. Sustain. Energy Rev. 15, 3813 (2011)CrossRefGoogle Scholar
  10. 10.
    A. Jamekhorshid, S.M. Sadrameli, M. Farid, Renew. Sustain. Energy Rev. 31, 531 (2014)CrossRefGoogle Scholar
  11. 11.
    H. Pourmohamadian, M. Rahimi-Nasrabadi, G.A. Sheikhzadeh, H.B. Tabrizi, J. Mater. Sci.: Mater. Electron. 29, 794 (2018)Google Scholar
  12. 12.
    H. Pourmohamadian, G.A. Sheikhzadeh, M. Rahimi-Nasrabadi, H.B. Tabrizi, J. Mater. Sci.: Mater. Electron. 28, 9990 (2017)Google Scholar
  13. 13.
    M. Rastogi, A. Chauhan, R. Vaish, A. Kishan, Energy Convers. Manag. 89, 260 (2015)CrossRefGoogle Scholar
  14. 14.
    A. Sarı, Energy Build. 69, 184 (2014)CrossRefGoogle Scholar
  15. 15.
    Y. Konuklu, M. Unal, H.O. Paksoy, Sol. Energy Mater. Sol. Cells 120, 536 (2014)CrossRefGoogle Scholar
  16. 16.
    S. Lu, J. Xing, Z. Zhang, G. Jia, J. Appl. Polym. Sci. 121, 3377 (2011)CrossRefGoogle Scholar
  17. 17.
    Y. Ma, X. Chu, W. Li, G. Tang, Sol. Energy 86, 2056 (2012)CrossRefGoogle Scholar
  18. 18.
    Y. Wang, Y. Zhang, T.D. Xia, W.J. Zhao, W.H. Yang, Sol. Energy Mater. Sol. Cells 120, 481 (2014)CrossRefGoogle Scholar
  19. 19.
    J. Giro-Paloma, M. Martínez, L.F. Cabeza, A.I. Fernández, Renew. Sustain. Energy Rev. 53, 1059 (2016)CrossRefGoogle Scholar
  20. 20.
    P.B. Salunkhe, P.S. Shembekar, Renew. Sustain. Energy Rev. 16, 5603 (2012)CrossRefGoogle Scholar
  21. 21.
    G. Fang, Z. Chen, H. Li, Chem. Eng. J. 163, 154 (2010)CrossRefGoogle Scholar
  22. 22.
    B. Li, T. Liu, L. Hu, Y. Wang, L. Gao, ACS Sustain. Chem. Eng. 1, 374 (2013)CrossRefGoogle Scholar
  23. 23.
    L. Cao, F. Tang, G. Fang, Energy Build. 72, 31 (2014)CrossRefGoogle Scholar
  24. 24.
    L. Zhao, H. Wang, J. Luo, Y. Liu, G. Song, G. Tang, Sol. Energy 127, 28 (2016)CrossRefGoogle Scholar
  25. 25.
    T. Sakthivel, V. Jaitely, N.V. Patel, A.T. Florence, Int. J. Pharm. 214, 43 (2001)CrossRefGoogle Scholar
  26. 26.
    A.R. Shirinabadi, A.R. Mahdavian, S. Khoee, Macromolecules 44, 7405 (2011)CrossRefGoogle Scholar
  27. 27.
    S. Yu, X. Wang, D. Wu, Appl. Energy 114, 632 (2014)CrossRefGoogle Scholar
  28. 28.
    H. Zhang, X. Wang, D. Wu, J. Colloid Interface Sci. 343, 246 (2010)CrossRefGoogle Scholar
  29. 29.
    Z. Chen, L. Cao, G. Fang, F. Shan, Nanoscale Microscale Thermophys. Eng. 17, 112 (2013)CrossRefGoogle Scholar
  30. 30.
    T. Wang, S. Wang, R. Luo, C. Zhu, T. Akiyama, Z. Zhang, Appl. Energy 171, 113 (2016)CrossRefGoogle Scholar
  31. 31.
    M. Rahimi-Nasrabadi, H.R. Naderi, M.S. Karimi, F. Ahmadi, S.M. Pourmortazavi, J. Mater. Sci.: Mater. Electron. 28, 1877 (2017)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Materials Science and EngineeringZhejiang University of TechnologyHangzhouChina
  2. 2.College of Mechanical EngineeringZhejiang University of TechnologyHangzhouChina

Personalised recommendations