Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 17, pp 15203–15211 | Cite as

Effect of hole blocking dielectric layer on microstructure and photoconducting properties of polycrystalline Se thin films

  • Cheng-Yi Chang
  • Yi-Jie Lin
  • Yu-Wei Huang
  • Jye-Yow Liao
  • Jian-Siang Lin
  • Fu-Ming PanEmail author


We fabricated polycrystalline selenium (c-Se) based photodetectors using three different dielectrics (HfO2, Al2O3 and SiO2) as the hole blocking layer (HBL), and studied the influence of the HBLs on the photoconducting performance of the photodetectors. The microstructure of the c-Se layer is greatly influenced by the nucleation behavior of the tellurium (Te) adhesion layer deposited between the c-Se layer and the HBLs. The photoconducting performance of the photodetectors is basically dependent on the barrier height at the junctions of the HBL with the tin-doped indium oxide (ITO) anode and with the c-Se layer. A higher barrier height at the HBL/ITO junction leads to a lower dark current density (ID) of the photodetectors. However, the photodetector with the SiO2 HBL exhibits the largest ID as the bias exceeds 2 V although it has the highest junction barrier height. We attribute the abnormity to the rugged morphology of the c-Se layer, which is a result of a less dense Te nucleation on the SiO2 HBL. The photocurrent density (Iph) is inversely related to the junction barrier height at the HBL/c-Se contact. The c-Se photodetector with the HfO2 HBL has the largest IPh and the one with the SiO2 HBL has the smallest. The photodetector with the HfO2 HBL exhibits a quantum efficiency of ~ 89% at 6 V.



This study is supported by the Ministry of Science and Technology, R.O.C. under the contract number MOST 106-2221-E-009-075-MY2. The technical support of the National Nano Device Laboratories are also acknowledged.


  1. 1.
    S. Imura, K. Kikuchi, K. Miyakawa, H. Ohtake, M. Kubota, Appl. Phys. Lett. 104, 242101 (2014)CrossRefGoogle Scholar
  2. 2.
    S. Kasap, J.A. Rowlands, J. Mater. Sci. Mater. Electron. 11, 179 (2000)CrossRefGoogle Scholar
  3. 3.
    S. Kasap, J.A. Rowlands, S.D. Baranovskii, K. Tanioka, J. Appl. Phys. 96, 2037 (2004)CrossRefGoogle Scholar
  4. 4.
    C.Y. Chang, F.M. Pan, J.S. Lin, T.Y. Yu, Y.M. Li, C.Y. Chen, J. Appl. Phys. 120, 234501 (2016)CrossRefGoogle Scholar
  5. 5.
    S. Kasap, J.A. Rowlands, Phys. Today 50, 24 (1997)Google Scholar
  6. 6.
    S. Kasap, J.B. Frey, G. Belev, O. Tousignant, H. Mani, L. Laperriere, A. Reznik, J.A. Rowlands, Phys. Status Solidi 246, 1794 (2009)CrossRefGoogle Scholar
  7. 7.
    S. Kasap, J.B. Frey, G. Belev, O. Tousignant, H. Mani, J. Greenspan, L. Laperriere, O. Bubon, A. Reznik, G. DeCrescenzo, K.S. Karim, J.A. Rowlands, Sensors 11, 5112 (2011)CrossRefGoogle Scholar
  8. 8.
    T.Y. Yu, F.M. Pan, C.Y. Chang, J.S. Lin, W.H. Huang, J. Appl. Phys. 118, 44509 (2015)CrossRefGoogle Scholar
  9. 9.
    J.R. Scheuermann, Y. Miranda, H. Liu, W. Zhao, J. Appl. Phys. 119, 24508 (2016)CrossRefGoogle Scholar
  10. 10.
    E. Maruyama, Jpn. J. Appl. Phys. 21, 213 (1982)CrossRefGoogle Scholar
  11. 11.
    A. Kunioka, T. Nakada, Jpn. J. Appl. Phys. 21, 73 (1982)CrossRefGoogle Scholar
  12. 12.
    T. Nakada, A. Kunioka, Jpn. J. Appl. Phys. 23, L587 (1984)CrossRefGoogle Scholar
  13. 13.
    S. Imura, K. Kikuchi, K. Miyakawa, H. Ohtake, M. Kubota, T. Nakada, T. Okino, Y. Hirose, Y. Kato, N. Teranishi, in 2014 IEEE International Electron Devices Meeting (IEEE, San Francisco, CA, 2014), pp. 4.3.1–4.3.4Google Scholar
  14. 14.
    N.G. Patel, B.H. Lashkari, C.J. Panchal, K.K. Makhija, Cryst. Res. Technol. 29, 859 (1994)CrossRefGoogle Scholar
  15. 15.
    S. Imura, K. Kikuchi, K. Miyakawa, M. Kubota, Can. J. Phys. 92, 645 (2014)CrossRefGoogle Scholar
  16. 16.
    L.B. Luo, X.B. Yang, F.X. Liang, J.S. Jie, Q. Li, Z.F. Zhu, C.Y. Wu, Y.Q. Yu, L. Wang, CrystEngComm 14, 1942 (2012)CrossRefGoogle Scholar
  17. 17.
    K. Hu, H.Y. Chen, M.M. Jiang, F. Teng, L.X. Zheng, X.S. Fang, Adv. Funct. Mater. 26, 6641 (2016)CrossRefGoogle Scholar
  18. 18.
    S. Imura, K. Kikuchi, K. Miyakawa, H. Ohtake, M. Kubota, T. Okino, Y. Hirose, Y. Kato, N. Teranishi, in 2015 IEEE International Electron Devices Meeting (IEEE, Washington, DC, 2015), pp. 30.7.1–30.7.4Google Scholar
  19. 19.
    J. Heleskivi, T. Stubb, T. Suntola, J. Appl. Phys. 40, 2923 (1969)CrossRefGoogle Scholar
  20. 20.
    S. Imura, K. Kikuchi, K. Miyakawa, H. Ohtake, M. Kubota, J. Phys. Conf. Ser. 619, 12008 (2015)CrossRefGoogle Scholar
  21. 21.
    K. Kikuchi, Y. Ohkawa, K. Miyakawa, T. Matsubara, K. Tanioka, M. Kubota, N. Egami, Phys. Status Solidi 8, 2800 (2011)CrossRefGoogle Scholar
  22. 22.
    T. Kikuchi, Y. Ema, T. Hayashi, J. Appl. Phys. 50, 5043 (1979)CrossRefGoogle Scholar
  23. 23.
    S. Imura, K. Mineo, K. Miyakawa, M. Nanba, H. Ohtake, M. Kubota, IEEE Sens. J. 18, 3108 (2018)CrossRefGoogle Scholar
  24. 24.
    T. Masuzawa, S. Kuniyoshi, M. Onishi, R. Kato, I. Saito, T. Yamada, A.T.T. Koh, D.H.C. Chua, T. Shimosawa, K. Okano, Appl. Phys. Lett. 102, 73506 (2013)CrossRefGoogle Scholar
  25. 25.
    K.W. Kolasinski, Surface Science Foundations of Catalysis and Nanoscience, 3rd edn. (Wiley, Chichester, 2012), pp. 317–319CrossRefGoogle Scholar
  26. 26.
    D. Perrone, M. Monteiro, J.C. Nunes, Selenium: Chemical, Analysis, Function and Effects, ed. by V.R. Preedy (The Royal Society of Chemistry, Cambridge, 2015), pp. 3–15CrossRefGoogle Scholar
  27. 27.
    C.H. Champness, A. Chan, J. Appl. Phys. 57, 4823 (1985)CrossRefGoogle Scholar
  28. 28.
    J. Yang, B.S. Eller, R.J. Nemanich, J. Appl. Phys. 116, 123702 (2014)CrossRefGoogle Scholar
  29. 29.
    N. Alimardani, E. William Cowell, J.F. Wager, J.F. Conley, D.R. Evans, M. Chin, S.J. Kilpatrick, M. Dubey, J. Vac. Sci. Technol. A 30, 01A113 (2012)CrossRefGoogle Scholar
  30. 30.
    J. Mort, J. Appl. Phys. 39, 3543 (1968)CrossRefGoogle Scholar
  31. 31.
    T. Masuzawa, I. Saito, T. Yamada, M. Onishi, H. Yamaguchi, Y. Suzuki, K. Oonuki, N. Kato, S. Ogawa, Y. Takakuwa, A. Koh, D. Chua, Y. Mori, T. Shimosawa, K. Okano, Sensors 13, 13744 (2013)CrossRefGoogle Scholar
  32. 32.
    K.K. Ng, Complete Guide to Semiconductor Devices, 2nd edn. (Wiley, Hoboken, 2010), pp. 470–474CrossRefGoogle Scholar
  33. 33.
    J.C. Bernède, G. Safoula, A. Ameziane, P. Burgaud, Phys. Status Solidi 110, 521 (1988)CrossRefGoogle Scholar
  34. 34.
    F.M. Li, B.C. Bayer, S. Hofmann, J.D. Dutson, S.J. Wakeham, M.J. Thwaites, W.I. Milne, A.J. Flewitt, Appl. Phys. Lett. 98, 252903 (2011)CrossRefGoogle Scholar
  35. 35.
    M.D. Groner, J.W. Elam, F.H. .Fabreguette, S.M. George, Thin Solid Films 413, 186 (2002)CrossRefGoogle Scholar
  36. 36.
    I. Idris, O. Sugiura, Jpn. J. Appl. Phys. 34, L772 (1995)CrossRefGoogle Scholar
  37. 37.
    T. Dekorsy, J.Sun,W. Skorupa, M. Helm, L. Rebohle, T. Gebel, in Nonequilibrium Carrier Dynamics in Semiconductor, ed. by U. Ravaioli, M. Saraniti (Springer, Heidelberg, 2006), pp. 265–268CrossRefGoogle Scholar
  38. 38.
    F. ElKamel, J. Phys. D Appl. Phys. 48, 285304 (2015)CrossRefGoogle Scholar
  39. 39.
    M. Lenzlinger, E.H. Snow, J. Appl. Phys. 40, 278 (1969)CrossRefGoogle Scholar
  40. 40.
    D. Temple, Mater. Sci. Eng. R. 24, 185 (1999)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Cheng-Yi Chang
    • 1
  • Yi-Jie Lin
    • 1
  • Yu-Wei Huang
    • 1
  • Jye-Yow Liao
    • 1
  • Jian-Siang Lin
    • 1
  • Fu-Ming Pan
    • 1
    Email author
  1. 1.Department of Materials Science and EngineeringNational Chiao-Tung UniversityHsinchuTaiwan, ROC

Personalised recommendations