Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 17, pp 15191–15202 | Cite as

Electrical conduction and switching properties of As2O3·V2O5·FeO glasses

  • E. M. Ahmed
  • N. A. El-Ghamaz
  • A. M. Edres
Article
  • 53 Downloads

Abstract

Electrical conductivity, negative resistance and joule heating characteristics for x%As2O3·(80-x)%V2O5·20%FeO bulk glasses with (25 ≤ x ≤ 45), have been investigated at various temperatures, frequencies and thicknesses. Electrical conductivity is found to increase from 3 × 10−5 to 0.012 Ω−1 m−1 depending on the composition. The experimental results for electrical conductivity has been analyzed using varies models. The dc activation energy (Edc) is estimated to be in the range 0.25–0.5 eV depending on the value of x. According to the multi phonon hopping model, the dc conductivity is found to be relative to Tp with the exponent p between 8.2 and 10.5. The fitted data of the ac conductivity according to Dyre’s percolation path approximation and Almond–West power law equation showed an excellent collapse to a single master curve. This indicates that there is a good time–temperature superposition in these glasses. Threshold switching type is detected in all the samples with maximum current of about 3 mA. The threshold voltage Vth values are affected by ambient temperature, sample thickness and sample composition ratios. The activation energy for switching is found to decrease with increasing the percentage of As2O3. Variations of the surface temperature during the switching cycles suggest the applicability of the electrothermal mechanism.

References

  1. 1.
    G. Nagarjuna, N. Venkatramaiah, P.V.V. Satyanarayana, N. Veeraiah, J Alloys Compds 468, 466 (2009)CrossRefGoogle Scholar
  2. 2.
    M.S. Aziz, F. Abdel-Wahab, A.G. Mostafa, E.M. El-Agwany, Mater. Chem. Phys. 91, 532 (2005)CrossRefGoogle Scholar
  3. 3.
    A.M. Abdelghany, A.H. Hammad, Spectrochim. Acta Part A 137, 39 (2015)CrossRefGoogle Scholar
  4. 4.
    S.M.D. Nery, W.M. Pontuschka, S. Isotani, C.G. Rouse, Phys. Rev. B 49, 3760 (1994)CrossRefGoogle Scholar
  5. 5.
    R.B. Rao, N. Veeraiah, Physcia B 348, 256 (2004)CrossRefGoogle Scholar
  6. 6.
    H. Scholze, Glass: nature, structure and properties (Springer, New York, 1991)CrossRefGoogle Scholar
  7. 7.
    M.C. Wang, M.S. Huang, N.C. Wu, J. Eur. Ceram. Soc. 21, 695 (2001)CrossRefGoogle Scholar
  8. 8.
    E.M. Ahmed, Curr. Appl. Phys. 13, 408 (2013)CrossRefGoogle Scholar
  9. 9.
    E.M. Ahmed, N.A. Elghamaz, A.M. Edres, Phys. Stat. solidi. A. (2018).  https://doi.org/10.1002/pssa.201800299 Google Scholar
  10. 10.
    M. Shapaan, J. Non-Cryst. Solids 355, 926 (2009)CrossRefGoogle Scholar
  11. 11.
    F. Abdel-Wahab, A. Merazga. A. Montaser, J. Low Temp. Phys. 186, 372 (2017)CrossRefGoogle Scholar
  12. 12.
    I.G. Austin, N.F. Mott, Adv. phys. 18(71), 41 (1969)CrossRefGoogle Scholar
  13. 13.
    S. Kumar, M. Husain, M. Zulfequar, Physica B 387, 400 (2007)CrossRefGoogle Scholar
  14. 14.
    R. Murugaraj, G. Govindaraj, D. George, Mater. Lett. 57, 1656 (2003)CrossRefGoogle Scholar
  15. 15.
    E. Culea, A. Nicula, Sol. Stat. Commun. 50(10), 929 (1984)CrossRefGoogle Scholar
  16. 16.
    A. Marinangeli, P. Dimarco, P. Monti, R. Simoni, Mater. Chem. 3, 171 (1978)CrossRefGoogle Scholar
  17. 17.
    S. Annamalai, R.P. Bhatta, I. Pegg, B. Dutta, J. Non-Cryst. Sol. 358, 1019 (2012)CrossRefGoogle Scholar
  18. 18.
    B. Dutta, N.A. Fahmy, I.L. Pegg, J. Non-Cryst. Sol. 351, 1958 (2005)CrossRefGoogle Scholar
  19. 19.
    H. Mori, H. Matsuno, and H. Sakata 276(1), 78 (2000)Google Scholar
  20. 20.
    K. Shimakawa, Phys. Rev. B 39(17), 15 (1989)CrossRefGoogle Scholar
  21. 21.
    K. Shimakawa, K. Miyake, Phys. Rev. Lett. 61, 22 (1988)CrossRefGoogle Scholar
  22. 22.
    D. Emin, Adv. Phys. 24, 305 (1975)CrossRefGoogle Scholar
  23. 23.
    K.L. Chopra, S.K. Bahl, Phys. Rev. B 1, 2545 (1970)CrossRefGoogle Scholar
  24. 24.
    F. Abdel-Wahab, M.S. Aziz, A.G. Mostafa, E.M. Ahmed, Mater. Sci. Eng. B 134, 1 (2006)CrossRefGoogle Scholar
  25. 25.
    J.C. Dyre, Phys. Lett. 108A, 457 (1985)CrossRefGoogle Scholar
  26. 26.
    J.C. Dyre, J. Phys. Rev B48, 12511 (1993)CrossRefGoogle Scholar
  27. 27.
    D.P. Almond, A.R. West, Solid State Ion. 9(10), 277 (1983)CrossRefGoogle Scholar
  28. 28.
    D.P. Almond, A.R. West, Solid State Ion. 23, 27 (1987)CrossRefGoogle Scholar
  29. 29.
    A.D. Pearson, J. Non-Cryst. Solids 2, 1 (1970)CrossRefGoogle Scholar
  30. 30.
    J.F. Dewald, A.D. Pearson, W.R. Northover, W.F. Peck Jr., J. Electrochem. Soc. 109, 243C (1962)CrossRefGoogle Scholar
  31. 31.
    E.M. Ahmed, N.A. El-Ghamaz, F. Abdel-Wahab, Phys. Status Solidi A 215, 1700666 (2018)CrossRefGoogle Scholar
  32. 32.
    N.S. Platakis, J. Non-Cryst. Solids 27, 331 (1978)CrossRefGoogle Scholar
  33. 33.
    D. Alder, H.K. Henisch, N.F. Mott, Rev. Mod. Phys. 52, 209 (1978)Google Scholar
  34. 34.
    N. Croitoru, C. Popescu, Phys. Status Solidi 3, 1047 (1970)CrossRefGoogle Scholar
  35. 35.
    C. Popescu, Solid State Electron. 18, 671 (1975)CrossRefGoogle Scholar
  36. 36.
    N. Klein, Thin Solid Films 7, 2675 (1970)Google Scholar
  37. 37.
    G. Jones, R.A. Collins, Phys. Status Solidi A 53, 339 (1979)CrossRefGoogle Scholar
  38. 38.
    M. Fadel, Vacuum 44, 851 (1993)CrossRefGoogle Scholar
  39. 39.
    A. Mansingh, R. Singh, S.B. Krljpanidhi, Solid-State Electron. 23, 649 (1979)CrossRefGoogle Scholar
  40. 40.
    M.A. Afifi, M.M. Abdel-Aziz, H.H. Labib, M. Fadel, E.G. El-Metwally, Vacuum 61, 45 (2001)CrossRefGoogle Scholar
  41. 41.
    R. Mehra, R. Shyam, P.C. Mathur, J. Non-Cryst. Solids 31, 435 (1979)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Physics Department, Faculty of ScienceDamietta UniversityNew DamiettaEgypt
  2. 2.Physics Department, Faculty of ScienceOmar Almokhtar UniversityDernaLibya

Personalised recommendations