Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 17, pp 15174–15182 | Cite as

Novel Bi2WO6 loaded g-C3N4 composites with enhanced photocatalytic degradation of dye and pharmaceutical wastewater under visible light irradiation

  • Wei Mao
  • Tianye Wang
  • Huaiyuan Wang
  • Shuang Zou
  • Shuxia Liu
Article
  • 20 Downloads

Abstract

Bi2WO6 loaded g-C3N4 composites with excellent photocatalytic activity for degradation rhodamine B (RhB) and tetracycline hydrochloride (TCH) was successfully synthesized via a facile and high-yield solvothermal route. The results showed that well-crystallized Bi2WO6 particles were loaded on sheet-like g-C3N4 and formed the heterojunction by chemical change of C, N and O. It was showed that loading g-C3N4 improved the as-prepared composites to own more effective electrical conductivity and narrower band gap, which can enhance the separation and migration of photogenerated electron-holes as so to enhance the photocatalytic activity. Hence, Bi2WO6/g-C3N4 exhibited great photocatalytic activities for degradation of RhB (99.6%, 75 min) and TCH (73.0%, 105 min). In addition, it was determined that the optimal mass of g-C3N4 addition was 0.05 g. This work provided a high-efficiency principle method to synthesize Bi2WO6 loaded g-C3N4 composites with the excellent photocatalytic performance for actual produce.

Notes

Acknowledgements

The present work was financially supported by Thirteenth Five-Year Science and Technology Projects of the Education Department of Jilin Province in 2018 (JJKH20180653KJ) and (JJKH20180686KJ), PhD start-up fund of Jilin Agricultural University (201723), the Natural Fund Project of Jilin Province (20170101077JC), National Key Research and Development Program (2017YFD0300405-4) and Science and Technology Development Plan Project Jilin Province (20160307006N Y).

References

  1. 1.
    S. Zeng, P. Kar, U.K. Thakur, K. Shankar, Nanotechnology 29, 052001 (2018)CrossRefGoogle Scholar
  2. 2.
    L.N. Qiao, H.C. Wang, Y.D. Luo et al., J. Am. Ceram. Soc. 100, 5548 (2018)Google Scholar
  3. 3.
    S.F. Zakeritabar, M. Jahanshahi, M. Peyravi, Catal. Lett. 148, 882 (2018)CrossRefGoogle Scholar
  4. 4.
    M. Munoz, Z.M.D. Pedro, J.A. Casas, J.J. Rodriguez, Appl. Catal. B 176, 249 (2015)CrossRefGoogle Scholar
  5. 5.
    S.C. Tang, I.M. Lo, Water Res. 47, 2613 (2013)CrossRefGoogle Scholar
  6. 6.
    S. Gupta, R. Medwal, T.B. Limbu et al., Appl. Phys. Lett. 107, 062902 (2015)CrossRefGoogle Scholar
  7. 7.
    T. Wang, W. Liu, Y. Gao, S. Liu, J. Mater. Sci. 28, 14949 (2017)Google Scholar
  8. 8.
    S.-H. Chen, Z. Yin, S.-L. Luo, X.-J. Li, L.-X. Yang, F. Deng, Appl. Surf. Sci. 259, 7 (2012)CrossRefGoogle Scholar
  9. 9.
    S. Zhong, C. Lv, S. Zou, F. Zhang, S. Zhang, J. Mater. Sci. 29, 2447 (2018)Google Scholar
  10. 10.
    M.-S. Gui, W.-D. Zhang, Q.-X. Su, C.-H. Chen, J. Solid State Chem. 184, 1977 (2011)CrossRefGoogle Scholar
  11. 11.
    D. Lu, H. Wang, Q. Shen, K.K. Kondamareddy, D. Neena, J. Phys. Chem. Solids 106, 76 (2017)CrossRefGoogle Scholar
  12. 12.
    F. Chen, D. Li, B. Luo, M. Chen, W. Shi, J. Alloy. Compd. 694, 193 (2017)CrossRefGoogle Scholar
  13. 13.
    J. Wang, L. Tang, G. Zeng et al., ACS Sustain. Chem. Eng. 5, 1062 (2016)CrossRefGoogle Scholar
  14. 14.
    J. Wang, L. Tang, G. Zeng et al., Appl. Catal. B 209, 285 (2017)CrossRefGoogle Scholar
  15. 15.
    T. Wang, F. Zhang, G. Xiao, S. Zhong, C. Lu, Photochem. Photobiol. 91, 291 (2015)CrossRefGoogle Scholar
  16. 16.
    S. Zhong, F. Zhang, W. Lu, T. Wang, L. Qu, RSC Adv. 5, 68646 (2015)CrossRefGoogle Scholar
  17. 17.
    F. Zhang, S. Zou, T. Wang, Y. Shi, P. Liu, Photochem. Photobiol. 93, 1154 (2017)CrossRefGoogle Scholar
  18. 18.
    M. Li, L. Zhang, X. Fan, Y. Zhou, M. Wu, J. Shi, J. Mater. Chem. A 3, 5189 (2015)CrossRefGoogle Scholar
  19. 19.
    Z.S. Seddigi, M.A. Gondal, S.G. Rashid, M.A. Abdulaziz, S.A. Ahmed, J. Mol. Catal. 420, 167 (2016)CrossRefGoogle Scholar
  20. 20.
    T. Wang, S. Zhong, S. Zou, F. Jiang, L. Feng, X. Su, Photochem. Photobiol. 93, 1034 (2017)CrossRefGoogle Scholar
  21. 21.
    T. Wang, G. Xiao, C. Li, S. Zhong, F. Zhang, Mater. Lett. 138, 81 (2015)CrossRefGoogle Scholar
  22. 22.
    Z. Sun, J. Guo, S. Zhu, L. Mao, J. Ma, D. Zhang, Nanoscale 6, 2186 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Wei Mao
    • 1
    • 2
  • Tianye Wang
    • 1
    • 2
    • 3
  • Huaiyuan Wang
    • 4
  • Shuang Zou
    • 5
  • Shuxia Liu
    • 1
    • 2
  1. 1.College of Resources and EnvironmentJilin Agricultural UniversityChangchunPeople’s Republic of China
  2. 2.Key Laboratory of Soil Resource Sustainable Utilization for Jilin Province Commodity Grain BasesChangchunPeople’s Republic of China
  3. 3.Institute of Water Resources and EnvironmentJilin UniversityChangchunPeople’s Republic of China
  4. 4.Jilin Institute of Geological Environment MonitoringChangchunPeople’s Republic of China
  5. 5.China Northeast Municipal Engineering Design and Research Institute Co., LTDChangchunPeople’s Republic of China

Personalised recommendations