Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 17, pp 15138–15146 | Cite as

Construction of ternary Ag/AgBr@UIO-66(NH2) heterojunctions with enhanced photocatalytic performance for the degradation of methyl orange

  • Sainan Cui
  • Zhouquan Ye
  • Cheng Qian
  • Jun Liu
  • Jie Jin
  • Qian Liang
  • Changhai Liu
  • Song Xu
  • Zhongyu Li
Article
  • 143 Downloads

Abstract

Metal–organic frameworks (MOFs) have been attracting considerable attention and present a great potential in photocatalytic water treatment, paving the way for building efficient and environmentally-friendly photocatalysts. In this work, a stable photoactive UIO-66(NH2) incorporated with Ag/AgBr photocatalyst has been successfully fabricated through the sonication-assisted deposition–precipitation technique and exhibits remarkable photocatalytic activity for the degradation of methyl orange (MO) dye under visible light irradiation (λ ≥ 420 nm). The as-prepared photocatalysts are characterized by powder X-ray diffraction, field-emission scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, BET, X-ray photoelectron spectra, UV–vis diffuse reflectance spectra, and photoluminescence spectra. Moreover, the obtained Ag/AgBr@UIO-66(NH2) photocatalyst shows an outstanding recyclability. The enhanced photocatalytic performance is attributed to the favorable band alignment between UIO-66(NH2) and AgBr mediated by Ag NPs. The surface plasmon resonance (SPR) effect of Ag NPs make the electrons in Ag NPs preferentially transfer to AgBr, which facilitates the charge transfer of Ag/AgBr@UIO-66(NH2).

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21703019, 51702025), Natural Science Foundation of Jiangsu Province (BK20150259, BK20160277).

References

  1. 1.
    M.E. Davis, Nature 417, 813–821 (2002)CrossRefGoogle Scholar
  2. 2.
    M. Dinca, J. Am. Chem. Soc. 129, 11172–11176 (2007)CrossRefGoogle Scholar
  3. 3.
    K.L. Mulfort, J.T. Hupp, J. Am. Chem. Soc. 129, 9604–9605 (2007)CrossRefGoogle Scholar
  4. 4.
    G. Ferey, Chem. Soc. Rev. 37, 191–214 (2008)CrossRefGoogle Scholar
  5. 5.
    O. Mehraj, F.A. Sofi, S.K. Moosvi, W. Naqash, K. Majid, J. Mater. Sci.: Mater. Electron. 29, 3358–3369 (2018)Google Scholar
  6. 6.
    T. Gadzikwa, O.K. Farha, C.D. Malliakas, M.G. Kanatzidis, J.T. Hupp, S.T. Nguyen, J. Am. Chem. Soc. 131, 13613–13615 (2009)CrossRefGoogle Scholar
  7. 7.
    K.L. Mulfort, O.K. Farha, C.D. Malliakas, M.G. Kanatzidis, J.T. Hupp, Chem. Eur. J. 16, 276–281 (2010)CrossRefGoogle Scholar
  8. 8.
    M. Savonnet, D. Bazer-Bachi, N. Bats, J. Perez-Pellitero, E. Jeanneau, V. Lecocq, C. Pinel, D. Farrusseng, J. Am. Chem. Soc. 132, 4518–4519 (2010)CrossRefGoogle Scholar
  9. 9.
    A. Corma, H. Garcıa, F.X. Llabres i Xamena. Chem. Rev. 110, 4606–4655 (2010)CrossRefGoogle Scholar
  10. 10.
    P. Kar, S. Farsinezhad, N. Mahdi, Y. Zhang, U. Obuekwe, H. Sharma, J. Shen, N. Semagina, K. Shankar, Nano Res. 9(11), 3478–3493 (2016)CrossRefGoogle Scholar
  11. 11.
    P. Kar, Y. Zhang, N. Mahdi, U.K. Thakur, B.D. Wiltshire, R. Kisslinger, K. Shankar, Nanotechnology. 29(1), 014002 (2017)CrossRefGoogle Scholar
  12. 12.
    C.C. Shen, Q. Zhu, Z.W. Zhao, T. Wen, X.K. Wang, A.W. Xu, J. Mater. Chem. A 3, 14661–14668 (2015)CrossRefGoogle Scholar
  13. 13.
    Q.S. Dong, Z.B. Jiao, H.C. Yu, J.H. Ye, Y.P. Bi, CrystEngComm 16, 8317–8321 (2014)CrossRefGoogle Scholar
  14. 14.
    I. Thomann, B.A. Pinaud, Z.B. Chen, B.M. Clemens, T.F. Jaramillo, M.L. Brongersma, Nano Lett. 11, 3440–3446 (2011)CrossRefGoogle Scholar
  15. 15.
    J.B. Fei, J.B. Li, Adv. Mater. 27, 314–319 (2015)CrossRefGoogle Scholar
  16. 16.
    K. Awazu, M. Fujimaki, C. Rockstuhl, J. Tominaga, H. Murakami, Y. Ohki, N. Yoshida, T. Watanabe, J. Am. Chem. Soc. 130, 1676–1680 (2008)CrossRefGoogle Scholar
  17. 17.
    H.F. Cheng, B.B. Huang, P. Wang, Z.Y. Wang, Z.Z. Lou, J.P. Wang, X.Y. Qin, X.Y. Zhang, Y. Dai, Chem. Commun. 47, 7054–7056 (2011)CrossRefGoogle Scholar
  18. 18.
    G.P. Dai, J.G. Yu, G. Liu, J. Phys. Chem. C 116, 15519–15524 (2012)CrossRefGoogle Scholar
  19. 19.
    C.L. Yu, G. Li, S. Kumar, K. Yang, R.C. Jin, Adv. Mater. 26, 892–898 (2014)CrossRefGoogle Scholar
  20. 20.
    W.S. Wang, H. Du, R.X. Wang, T. Wen, A.W. Xu, Nanoscale 5, 3315–3321 (2013)CrossRefGoogle Scholar
  21. 21.
    Q. Liang, M. Zhang, Z.H. Zhang, C.H. Liu, S. Xu, Z.Y. Li, J. Alloy. Compd. 690, 123–130 (2017)CrossRefGoogle Scholar
  22. 22.
    J. He, D.W. Shao, L.C. Zheng, L.J. Zheng, D.Q. Feng, J.P. Xu, X.H. Zhang, W.C. Wang, W.-H. Wang, F. Lu, H. Dong, Y.H. Cheng, H. Liu, R.K. Zheng, Appl. Catal. B-Environ. 203, 917–926 (2017)CrossRefGoogle Scholar
  23. 23.
    W.J. Ong, L.K. Putri, L.L. Tan, S.P. Chai, S.T. Yong, Appl. Catal. B-Environ. 180, 530–543 (2016)CrossRefGoogle Scholar
  24. 24.
    L.J. Shen, W.M. Wu, R.W. Liang, R. Lina, L. Wu, Nanoscale 5, 9374–9382 (2013)CrossRefGoogle Scholar
  25. 25.
    L. Valenzano, B. Civalleri, S. Chavan, S. Bordiga, M.H. Nilsen, S. Jakobsen, K.P. Lillerud, C. Lamberti, Chem. Mater. 23, 1700–1718 (2011)CrossRefGoogle Scholar
  26. 26.
    Q. Liang, G.Y. Jiang, Z. Zhao, Z.Y. Li, M.J. MacLachlan, Catal. Sci. Technol. 5, 3368–3374 (2015)CrossRefGoogle Scholar
  27. 27.
    R.B. Wu, X.K. Qian, K. Zhou, H. Liu, B. Yadian, J. Wei, H.W. Zhu, Y.Z. Huang, J. Mater. Chem. A 1, 14294–14299 (2013)CrossRefGoogle Scholar
  28. 28.
    S.T. Gao, W.H. Liu, C. Feng, N.Z. Shang, C. Wang, Catal. Sci. Technol. 6, 869–874 (2016)CrossRefGoogle Scholar
  29. 29.
    Q. Liang, J. Jin, C.H. Liu, S. Xu, C. Yao, Z.Y. Li, Inorg. Chem. Front. 5, 335–343 (2018)CrossRefGoogle Scholar
  30. 30.
    Y.G. Xu, H. Xu, J. Yan, H.M. Li, L.Y. Huang, Q. Zhang, C.J. Huang, H.L. Wan, Phys. Chem. Chem. Phys. 15, 5821–5830 (2013)CrossRefGoogle Scholar
  31. 31.
    Q. Zhu, W.S. Wang, L. Lin, G.Q. Gao, H.L. Guo, H. Du, A.W. Xu, J. Phys. Chem. C 117, 5894–5900 (2013)CrossRefGoogle Scholar
  32. 32.
    J. Yang, Y. Dai, X.Y. Zhu, Z. Wang, Y.S. Li, Q.X. Zhuang, J.L. Shi, J.L. Gu, J. Mater. Chem. A 3, 7445–7452 (2015)CrossRefGoogle Scholar
  33. 33.
    J. He, J.Q. Wang, Y.J. Chen, J.P. Zhang, D.L. Duan, Y. Wang, Z.Y. Yan, Chem. Commun. 50, 7063–7066 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Sainan Cui
    • 1
  • Zhouquan Ye
    • 1
  • Cheng Qian
    • 1
  • Jun Liu
    • 1
  • Jie Jin
    • 1
  • Qian Liang
    • 1
  • Changhai Liu
    • 3
  • Song Xu
    • 1
  • Zhongyu Li
    • 1
    • 2
  1. 1.Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical EngineeringChangzhou UniversityChangzhouPeople’s Republic of China
  2. 2.School of Environmental & Safety EngineeringChangzhou UniversityChangzhouPeople’s Republic of China
  3. 3.Jiangsu Collaborative Innovation Center of Photovolatic Science and Engineering, School of Materials Science & EngineeringChangzhou UniversityChangzhouPeople’s Republic of China

Personalised recommendations