Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 17, pp 15106–15111 | Cite as

Exploration of photoanode characteristics of a mixed ferroelectric ZnSnO3 and semiconducting Zn2SnO4 phase for photovoltaic applications

  • M. ManikandanEmail author
  • T. Mukilraj
  • C. Venkateswaran
  • S. Moorthy BabuEmail author


The spontaneous and reversible polarization characteristics of ferroelectric materials gain considerable interest in photovoltaic applications. Intrinsic polarization of ferroelectric materials induces the built-in potential which potentially facilitates the separation of photoexcited electron–hole pairs in the devices. In an effort to understand the photo-physical characteristics, ball milling assisted sintering method was employed to prepare the compound. Mixed phase of ZnSnO3 and Zn2SnO4 shows an absorbance maximum in the range between 235 and 400 nm in UV–Vis spectrum. Synthesized mixed phases of ZnSnO3 and Zn2SnO4 is used as a photoanode in the Dye-sensitized solar cell and the effect of mixed phases in the photovoltaic property is analyzed. By using Ruthenium dye and LiI electrolyte, the photo conversion efficiency is examined. The observed open circuit voltage is 0.64 V and the short circuit current density is 4.2 mAcm−2. The observed Fill factor and conversion efficiency are 0.56 and 1.5%, respectively.



M.M. thank UGC, India for funding through Dr. D. S. Kothari Post-doctoral fellow, and acknowledge the Centre for Nanoscience & Technology, Crystal Growth Centre, Anna University, Chennai and Dept. Of Nuclear Physics, University of Madras, Chennai for facilities and Measurements.


  1. 1.
    O.’R. Brian, M. Gratzel, Nature 353, 737–740 (1991)CrossRefGoogle Scholar
  2. 2.
    W.-H. Li Liu, M.-J. Ai, S.-Z. Li, C.-M. Liu, Zhang, H.-X. Yan, Z.-L. Du, W.-Y. Wong, Chem. Mater. 19, 1704–1711 (2007)CrossRefGoogle Scholar
  3. 3.
    A. Yella, H.-W. Lee, H.N. Tsao, C. Yi, A.K. Chandiran, K. Nazeeruddin, E.W.-G. Diau, C.-Y. Yeh, S.M. Zakeeruddin, M. Grätzel, Science 334, 629–634 (2011)CrossRefGoogle Scholar
  4. 4.
    F. Sauvage, J.D. Decoppet, M. Zhang, S.M. Zakeeruddin, M. Nazeeruddin, P. Wang, M. Grätzel, J. Am. Chem. Soc. 133, 9304–9310 (2011)CrossRefGoogle Scholar
  5. 5.
    P. Tiwana, P. Docampo, M.B. Johnston, H.J. Snaith, L.M. Herz, ACS Nano 5, 5158–5166 (2011)CrossRefGoogle Scholar
  6. 6.
    F. Huang, D. Chen, X.L. Zhang, A. Rachel, Caruso, Y.-B. Cheng, Adv. Func. Mater. 20, 1301–1305 (2010)CrossRefGoogle Scholar
  7. 7.
    J.-Y. Liao, B.-X. Lei, D.-B. Kuang, C.-Y. Su, Energy Environ. Sci. 4, 4079–4085 (2011)CrossRefGoogle Scholar
  8. 8.
    M. Grätzel, Nature 414, 338 (2001)CrossRefGoogle Scholar
  9. 9.
    M. Law, L.E. Greene, J.C. Johnson, R. Saykally, P. Yang, Nat. Mater. 4, 455–459 (2005)CrossRefGoogle Scholar
  10. 10.
    K. Sayama, H. Sugihara, H. Arakawa, Chem. Mater. 10, 3825–3832 (1998)CrossRefGoogle Scholar
  11. 11.
    S. Caramori, V. Cristino, R.B.R. Argazzi, C.A. Bignozzi, A.D. Carlo, Int. J. PhotoEnerg. 2010, 1–16 (2010)CrossRefGoogle Scholar
  12. 12.
    K. Feng, D. Liu, X. Si, Tang, A. Xing, M. Osada, P. Xiao. J. Power Sources 350, 35–40 (2017)CrossRefGoogle Scholar
  13. 13.
    S.S. Shin, J.S. Kim, J.H. Suk, K.D. Lee, D.W. Kim, J.H. Park, I.S. Cho, K.S. Hong, J.Y. Kim, ACS Nano 7, 1027–1035 (2013)CrossRefGoogle Scholar
  14. 14.
    Y. Yuan, Z. Xiao, B. Yang, J. Huang, J. Mater. Chem. A 2, 6027–6041 (2014)CrossRefGoogle Scholar
  15. 15.
    Y. Inaguma, M. Yoshida, T. Katsumata, J. Am. Chem. Soc. 130, 6704–6705 (2008)CrossRefGoogle Scholar
  16. 16.
    S. Hisatome, M. Takemoto, Electrochemistry 84, 130–132 (2016)CrossRefGoogle Scholar
  17. 17.
    Y.-Y. Choi, K.-H. Choi, H. Lee, H. Lee, J.-W. Kang, H.-K. Kim, Sol. Energy Mater. Sol. Cells 95, 1615–1623 (2011)CrossRefGoogle Scholar
  18. 18.
    B. Kolb, A.M. Kolpak, Chem. Mater. 27, 5899–5906 (2015)CrossRefGoogle Scholar
  19. 19.
    D. Hwang, J.S. Jin, H. Lee, H.J. Kim, H. Chung, D.-Y. Kim, S.Y. Jang, D. Kim, Sci. Rep. 4, 7353 (2014)CrossRefGoogle Scholar
  20. 20.
    C. Fang, B. Geng, J. Liu, F. Zhan, Chem. Commun. 17, 2350–2352 (2009)CrossRefGoogle Scholar
  21. 21.
    K. Wang, Y. Shi, W. Guo, X. Yu, T. Ma, Electrochim Acta 135, 242–248 (2014)CrossRefGoogle Scholar
  22. 22.
    M. Miyauchi, Z. Liu, Z.-G. Zhao, S. Anandan, K. Hara, Chem. Commun. 46, 1529–1531 (2010)CrossRefGoogle Scholar
  23. 23.
    A.M. Alpuche-Aviles, Y. Wu, J. Am. Chem. Soc. 131, 3216–3224 (2009)CrossRefGoogle Scholar
  24. 24.
    C. Longo, A.F. Nogueira, M.A. De Paoli, H. Cachet, J. Phys. Chem. 106, 5925–5930 (2002)CrossRefGoogle Scholar
  25. 25.
    S.P. Lim, A. Pandikumar, H.N. Lim, R. Ramaraj, N.M. Huang, Sci. Rep. 5, 11922 (2015)CrossRefGoogle Scholar
  26. 26.
    A.A. Al-Ghamdi, R.K. Gupta, P.K. Kahol, S. Wageh, Y.A. Al-Turki, W. Shirbeeny, F. Yakuphanoglu, Solid State Commun. 183, 56–59 (2014)CrossRefGoogle Scholar
  27. 27.
    M. Asemi, M. Ghanaatshoar, J. Am. Ceram. Soc. 42, 1–9 (2017)Google Scholar
  28. 28.
    P.P. Das, A. Roy, S. Das, P.S. Devi. Phys. Chem. Chem. Phys. 18, 1429–1438 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Centre for Nanoscience & TechnologyAnna UniversityChennaiIndia
  2. 2.Department of Nuclear PhysicsUniversity of MadrasChennaiIndia

Personalised recommendations