Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 17, pp 15086–15096 | Cite as

Development and study of solid polymer electrolytes based on PVdF-HFP/PVAc: Mg (ClO4)2 for Mg ion batteries

  • S. Ponmani
  • M. Ramesh PrabhuEmail author


The Mg-ion conducting solid polymer electrolytes (SPE) consisting of PVdF-HFP/PVAc with magnesium perchlorate Mg(ClO4)2 salt have been developed and their experimental investigations are reported. Solution casting method is used for the preparation of the polymer electrolyte films by using THF as solvent. The XRD reveals that the crystalline phase of the polymer host and it has completely changed into other side with the addition of the dopant. FTIR analysis shows the good complexation behavior between the polymer and the salt. The temperature dependent ac ionic conductivity shows the highest ionic conductivity of 2.93 × 10− 4 Scm− 1 was found at 363K for the concentration of 69 Wt% PVdF-HFP: 23 Wt% PVAc : 8 Wt% Mg(ClO4)2 of the polymer electrolytes with an activation energy value of 0.33 eV. The SPE with the highest conductivity showed as electrochemical stability of 4 V. The obtained cyclic voltammetry is an evidence for reversibility.


  1. 1.
    S. Agnihotri, A.L. Sharma, Optimization of concentration of MWCNT in terms of performance of prepared novel cathode material for energy storage. J. Integr. Sci. Technol. 5, 23–26 (2017)Google Scholar
  2. 2.
    X. Luo, J. Wang, M. Dooner, J. Clarke, Overview of current development in electrical energy storage technologies and the application potential in power system operation. Appl. Energy 137, 511–536 (2014)CrossRefGoogle Scholar
  3. 3.
    J. Skea, S. Nishioka (2008) Policies and practices for a low-carbon society. Climate policy (Taylor and francis, Milton Park) pp. 5–16Google Scholar
  4. 4.
    H. Chen, T.N. Cong, W. Yang, C. Tan, Y. Li, Y. Ding, Progress in electrical energy storage system: a critical review. Prog. Nat. Sci. 19, 291–312 (2009)CrossRefGoogle Scholar
  5. 5.
    F.B. Dias, L. Plomp, J.B.J. Veldhuis, Trends in polymer electrolytes for secondary lithium batteries. J. Power Sour. 88, 169–191 (2000)CrossRefGoogle Scholar
  6. 6.
    B. Scrosati, F. Croce, S. Panero, Progress in lithium polymer battery R&D. J. Power Sour. 100, 93–100 (2001)CrossRefGoogle Scholar
  7. 7.
    C.H. Park, Y.K. Sun, D.W. Kim, Blended polymer electrolytes based on poly(lithium 4-styrene sulfonate) for the rechargeable lithium polymer batteries. Electrochim. Acta 50, –375 (2004)Google Scholar
  8. 8.
    J.B. Good enough, Y. Kim, Challenges for rechargeable Li batteries. Chem. Mater. 22, 587–603 (2010)CrossRefGoogle Scholar
  9. 9.
    H. Ibrahim, A. Ilinca, J. Perron, Energy storage systems—characteristics and comparisons. Renew. Sustain. Energy Rev. 12, 1221–1250 (2008)CrossRefGoogle Scholar
  10. 10.
    C. Liu, F. Li, L.-P. Ma, H.-M. Cheng, Advanced materials for energy storage. Adv. Mater. 22, 28–62 (2010)CrossRefGoogle Scholar
  11. 11.
    N. Angulakshmi, S. Thomas, K.S. Nahm, A.M. Stephan, R.N. Elizabeth, Electrochemical and mechanical properties of nanochitin-incorporated PVDF-HFP-based polymer electrolytes for lithium batteries. Ionics 17, 407–414 (2011)CrossRefGoogle Scholar
  12. 12.
    A.M. Stephan, Review on gel polymer electrolytes for lithium batteries. Eur. Polym. J 42, 21–42 (2006)CrossRefGoogle Scholar
  13. 13.
    D. Aurbach, H. Gizbar, A. Schechter, O. Chusid, E.H. Gottlieb, Y. Gofer, I. Goldberg, Electrolyte solutions for rechargeable magnesium batteries based on organomagnesium chloroaluminate complexes. J. Electrochem. Soc. 149, 115–121 (2002)CrossRefGoogle Scholar
  14. 14.
    R.M. Darling, K.G. Gallagher, J.A. Kowalski, S. Ha, F.R. Brushett, Pathways to low cost electrochemical energy storage: a comparison of aqueous and nonaqueous flow batteries. Energy Environ. Sci. 7, 3459–3477 (2014)CrossRefGoogle Scholar
  15. 15.
    M. Pasta, C.D. Wessells, R.A. Huggins, Y. Cui, A high-rate and long cycle life aqueous electrolyte battery for grid-scale energy storage. Nat. commun. 3, 1149–1155 (2012)CrossRefGoogle Scholar
  16. 16.
    N. Wu, Y.C. Lyu, R.J. Xiao, Y.X. Yu, X.Q. Yang, H. Li, L. Gu, Y.G. Guo, A highly reversible, low strain Mg-ion insertion anode material for rechargeable Mg-ion batteries. NPG Asia Mater 2014 6, e120 (2014)CrossRefGoogle Scholar
  17. 17.
    N. Wu, H.R. Yao, Y.G. Guo, Y.X. Yin, Improving the electrochemical properties of the red P anode in Na-ion batteries via the spaceconfinement of carbon nanopores. J. Mater. Chem. A 3, 24221–24225 (2015)CrossRefGoogle Scholar
  18. 18.
    Y. Nuli, J. Yang, J. Wang, Y. Li, Electrochemical interaction of Mg2+ in magnesium manganese silicate and its application as high energy rechargeable magnesium battery cathode. J. Phys. Chem. C 113, 12594–12597 (2009)CrossRefGoogle Scholar
  19. 19.
    S. Song, M. kotobuki, F. zheng, Q. Li, C. xu, Y. Wang, W.D.Z. Li, N. Hu, L. Lu, communication- a composite polymer electrolyte for safer Mg batteries. J. Electrochem. Soc. 164, 741–743 (2017)CrossRefGoogle Scholar
  20. 20.
    M.S. Park, J.G. Kim, Y.J. Kim, N.S. Choi, J.S. Kim, Recent advances in rechargeable magnesium battery technology: a review of the field’s current status and prospects. Isr. J. Chem. 55, 570–585 (2015)CrossRefGoogle Scholar
  21. 21.
    N. Wu, W. Wang, Y. Wei, T. Li,)studies on the effect of nano sized Mgo in magnesium ion conducting gel polymer electrolytes for rechargeable magnesium batteries. Energies 10, 1215 (2017)CrossRefGoogle Scholar
  22. 22.
    J. Wang, S. Song, R. Muchakayala, X. Hu, R. Liu, Structural, electrical and electrochemical properties of PVA based biodegradable gel polymer electrolyte membranes for Mg-ion battery applications. Ionics 23, 1759–1769 (2017)CrossRefGoogle Scholar
  23. 23.
    J. Song, E. Sahadeo, M. Noked, S.B. Lee, Mapping the challenges of Magnesium battery. J. Phys. Chem. Lett. 7, 1736–1749 (2016)CrossRefGoogle Scholar
  24. 24.
    S. Abbrent, J. Plestil, D. Hlavata, J. Lindgren, J. Tegenfeldt, A. Wendsjo, Crystallinity and morphology of PVdF-HFP-based gel electrolytes. Polymer 42, 1407–1416 (2001)CrossRefGoogle Scholar
  25. 25.
    N. Ataollahi, A. Ahmad, H. Hamzah, M.Y.A. Rahman, N.S. Mohamed, Preparation and characterization of PVDF-HFP/MG49 based polymer blend electrolyte. Int. J. Electrochem. Sci. 7, 6693–6703 (2012)Google Scholar
  26. 26.
    M. Ulaganathan, S. Rajendran, Preparation and characterization of (PVAc/PVdF-HFP)—based polymer blend electrolytes. Ionics 16, 515–521 (2010)CrossRefGoogle Scholar
  27. 27.
    Y. Hirai, C. Tani, Electrochromism for organic materials in polymeric all-solid-state systems. Appl. Phys. Lett. 43, 704 (1983)CrossRefGoogle Scholar
  28. 28.
    L.L. Yang, A.R. McgGhie, G.C. Parrington, Ionic conductivity in complexes of poly(ethylene oxide) and MgCl2. J. Electrochem. Soc. 133, 1380–1385 (1986)CrossRefGoogle Scholar
  29. 29.
    M. Ulaganathan, S. Sundar pethaiah, S. Rajendran, Li-ion conduction in PVAc based polymer blend electrolytes for lithium battery applications. Mat. chem. Phys. 129, 471–476 (2011)CrossRefGoogle Scholar
  30. 30.
    R.M. Hodge, G.H. Edward, G.P. Simon, Water absorption and states of water in semicrystalline poly (vinyl alcohol) films. Polymer 37, 1371–1376 (1996)CrossRefGoogle Scholar
  31. 31.
    M.J. Reddy, P.P. Chu, Effect of Mg2 + on PEO morphology and conductivity. Solid State Ionics 149, 115–123 (2002)CrossRefGoogle Scholar
  32. 32.
    R. Mangalam, M. Thamilselvan, S. Selvasekarapandian, S. Jayakumar, R. Manjuladevi, S. Vairam (2017) Development and study of solid polymer electrolyte based on polyvinyl alcohol: Mg(ClO4)2. Polym-Plast. Technol. Eng.
  33. 33.
    M. Ulaganathan, S. Rajendran, Preparation and characterizations of PVAc/PVdF-HFP based polymer blend electrolytes. Ionics 16, 515–521 (2010)CrossRefGoogle Scholar
  34. 34.
    S. Selvasekarapandian, R. Baskaran, O. Kamishima, J. Kawamura, T. Hattori, Laser raman and FTIR studies on Li + interaction in PVAc/LiClO4 polymer electrolytes. Spectrochimica Acta Part A 65, 1234–1240 (2006)CrossRefGoogle Scholar
  35. 35.
    L.N. Sim, S.R. Majid, A.K. Arof, FTIR studies of PEMA/PVdF-HFP blend polymer electrolyte system incorporated with LiCF3SO3 salt. Vib. Spectrosc. 58, 57–66 (2012)CrossRefGoogle Scholar
  36. 36.
    M. Ulaganathan, S. Rajendran, Effect of different salts on PVAc/PVdF-co-HFP based polymer blend electrolytes. J. Appl. Polym. Sci. 118, 646–651 (2010)Google Scholar
  37. 37.
    S. Aruna, A. Anuradha, P.C. Thomas, M. Gulam Mohammed, S.A. Rajasekar, M. Vimalan, G. Mani, P. Sagayaraj, Growth, optical and thermal studies of L-arginine perchlorate—A promising non-linear optical single crystal. Indian J. Pure Appl. Phys. 45, 524–528 (2007)Google Scholar
  38. 38.
    F.A. Miller, G.C. Carlson, F.F. Bentley, W.H. Jones, Infra-red spectra of inorganic ions in the cesium bromide region (700 – 300 cm – 1). Spectrochim Acta 16, 135–235 (1960)CrossRefGoogle Scholar
  39. 39.
    D. Vanitha, A. Bahadur sultan, N. Nallaperumal, A. Shunmuganarayanan, Structural, thermal and electrical properties of polyvinyl alcohol/poly (vinyl pyrrolidone)—sodium nitrate solid polymer blend electrolyte. Ionics 24, 139–151 (2018)CrossRefGoogle Scholar
  40. 40.
    S. Sivadevi, S. Selvasekarapandian, S. Karthikeyan, N. vijaya, F. Kingslin, M. Genova, C. Sanjeeviraja, H. Nithya, I.J. kawamura, Proton-conducting polymer electrolyte based on PVA-PAN blend polymer doped with NH4NO3.. Int. J. Electroact. Mater. 1, 64–70 (2013)Google Scholar
  41. 41.
    K.P. Radha, S. Selvasekarapandian, S. Karthikeyan, M. Hema, C. Sanjeeviraja, Synthesis and impedance analysis of proton-conducting polymer electrolyte PVA:NH4F. Ionics 19, 1437–1447 (2013)CrossRefGoogle Scholar
  42. 42.
    S.D. Druger, A. Nitzan, M.A. Ratner, Application of dynamic bond percolation theory to the dielectric response of polymer electrolytes. Solid State Ionics 18–19, 106–111 (1983)Google Scholar
  43. 43.
    S. Ramesh, A.H. Yahya, A.K. Arof, Dielectric behaviour of PVC-based polymer electrolytes. Solid State Ionics 152, 291–294 (2002)CrossRefGoogle Scholar
  44. 44.
    X. Qian, N. Gu, Z. Cheng, X. Yang, E. Wang, S. Dong, Impedance study of (PEO)10LiClO4–Al2O3 composite polymer electrolyte with blocking electrodes. Electrochim. Acta 46, 1829–1836 (2001)CrossRefGoogle Scholar
  45. 45.
    G. Govindaraj, N. Baskaran, K. Shahi, P. Monoravi, Preparation, conductivity, complex permittivity and electric modulus in AgI,Ag2O,SeO3,MoO3 glasses. Solid State Ionics 76, 47–55 (1995)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysicsAlagappa UniversityKaraikudiIndia

Personalised recommendations