Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 17, pp 15060–15067 | Cite as

Upconversion luminescence properties of ZnO:Yb3+,Er3+ prepared by hydrothermal method

  • Xiaohui Zhang
  • Haiming Zhang
  • Lijuan Wei
  • Yue Zhang
  • Biao Zhang
Article
  • 82 Downloads

Abstract

Ytterbium and erbium co-doped ZnO powders were prepared through simple and easy-controlled hydrothermal method. The phase, structure, morphology and surface elements of the obtained samples were characterized by X-ray diffraction, scanning electron microscopy (SEM), energy dispersive spectrometer, transmission electron microscope (TEM) and UV–Visible spectrophotometry. The performance of upconversion photoluminescence was investigated by fluorescence spectrophotometer. The ZnO:Yb3+,Er3+ powder samples generate red emission of 660 nm under the excitation wavelength 980 nm. The effect of Yb3+ doped concentration on the upconversion luminescence was studied. The results show that the optimal doped concentration is 20 mol%, and the back energy transfer will lead to fluorescence quenching when the concentration is increased again.

Notes

Acknowledgements

This study was supported by National Natural Science Foundation of China (Grant No. 61274064).

References

  1. 1.
    M. Pollnau, D.R. Gamelin, S.R. Lüthi, H.U. Güdel, Phys. Rev. B 61, 3337 (2000)CrossRefGoogle Scholar
  2. 2.
    R. Scheps, Prog. Quantum Electron. 20, 271 (1996)CrossRefGoogle Scholar
  3. 3.
    F. Auzel, Chem. Rev. 104, 139 (2004)CrossRefGoogle Scholar
  4. 4.
    W. Kaiser, C.G. Garrett, Phys. Rev. Lett. 7, 229 (1961)CrossRefGoogle Scholar
  5. 5.
    A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, H. Opower, Appl. Phys. B 58, 365 (1994)CrossRefGoogle Scholar
  6. 6.
    S.J. Kwon, G.Y. Lee, K. Jung, H.S. Jang, J.S. Park, H. Ju, I.K. Han, H. Ko, Adv. Mater. 28, 7899 (2016)CrossRefGoogle Scholar
  7. 7.
    T. Wen, Y. Zhou, Y. Guo, C. Zhao, B. Yang, Y. Wang, J. Mater. Chem. C 4, 684 (2016)CrossRefGoogle Scholar
  8. 8.
    W.-N. Wang, Fu Zhang, C.-L. Zhang, Y.-C. Guo, W. Dai, H.-S. Qian, ChemCatChem 9, 3611 (2017)CrossRefGoogle Scholar
  9. 9.
    X. Huang, S. Han, W. Huang, X. Liu, Chem. Soc. Rev. 42, 173 (2013)CrossRefGoogle Scholar
  10. 10.
    D. Yang, P. Ma, Z. Hou, Z. Cheng, C. Li, J. Lin, Chem. Soc. Rev. 44, 1416 (2014)CrossRefGoogle Scholar
  11. 11.
    H. Dong, S.-R. Du, X.-Y. Zheng, G.-M. Lyu, L.-D. Sun, L.-D. Li, P.-Z. Zhang, C. Zhang, C. Zhang, C.-H. Yan, Chem. Rev. 115, 10725 (2015)CrossRefGoogle Scholar
  12. 12.
    S.A. Hilderbrand, F. Shao, C. Salthouse, U. Mahmood, R. Weissleder, Chem. Commun. 28, 4188 (2009)CrossRefGoogle Scholar
  13. 13.
    Q. Su, W. Feng, D. Yang, F. Li, Acc. Chem. Res. 50, 32 (2016)CrossRefGoogle Scholar
  14. 14.
    L. Douglas, R. Mundle, R. Konda, C.E. Bonner, A.K. Pradhan, D.R. Sahu, J.-L. Huang, Opt. Lett. 33, 815 (2008)CrossRefGoogle Scholar
  15. 15.
    M. Berginski, J. Hüpkes, W. Reetz, B. Rech, M. Wuttig, Thin Solid Films 516, 5836 (2008)CrossRefGoogle Scholar
  16. 16.
    R.E.I. Schropp, H. Li, R.H.J. Franken, Sol. Energy Mater. Sol. Cells 93, 1129 (2009)CrossRefGoogle Scholar
  17. 17.
    R. Zamiri, A.F. Lemos, A. Reblo, H.A. Ahangar, J.M.F. Ferreira, Ceram. Int. 40, 523 (2014)CrossRefGoogle Scholar
  18. 18.
    A.K. Pradhan, K. Zhang, G.B. Loutts, U.N. Roy, Y. Cui, A. Burger, J. Phys. Condensed Matter 16, 7123 (2004)CrossRefGoogle Scholar
  19. 19.
    S.D. Senol, J. Mater. Sci.: Mater. Electron. 27, 7767 (2016)Google Scholar
  20. 20.
    G.L. Kabongo, G.H. Mhlongo, B.M. Mothudi, K.T. Hillie, H.C. Swart, M.S. Dhlamini, Mater. Lett. 119, 71 (2014)CrossRefGoogle Scholar
  21. 21.
    M. Balestrieri, G. Ferblantier, S. Colis, G. Schmerber, C. Ulhaq-Bouillet, D. Muller, A. Slaoui, A. Dinia, Sol. Energy Mater. Sol. Cells 117, 363 (2013)CrossRefGoogle Scholar
  22. 22.
    I. Soumahoro, G. Schmerber, A. Douayar, S. Colis, M. Abd-Lefdil, N. Hassanain, A. Berrada, D. Muller, A. Slaoui, H. Rinnert, A. Dinia, J. Appl. Phys. 109, 033708 (2011)CrossRefGoogle Scholar
  23. 23.
    R. John, R. Rajakumari, Nano-Micro Lett. 4, 65 (2012)CrossRefGoogle Scholar
  24. 24.
    Y. Bai, Y. Wang, K. Yang, X. Zhang, Y. Song, C.H. Wang, Opt. Commun. 281, 5448 (2008)CrossRefGoogle Scholar
  25. 25.
    H.L. Han, L.W. Yang, Y.X. Liu, Y.Y. Zhang, Q.B. Yang, Opt. Mater. 31, 338 (2008)CrossRefGoogle Scholar
  26. 26.
    S. Zhou, K. Deng, X. Wei, G. Jiang, C. Duan, Y. Chen, M. Yin, Opt. Commun. 291, 138 (2013)CrossRefGoogle Scholar
  27. 27.
    X. Wang, Y. Kong, Y. Yu, Y. Sun, H. Zhang, J. Phys. Chem. C 111, 15119 (2007)CrossRefGoogle Scholar
  28. 28.
    M. Inokuti, F. Hirayama, J. Chem. Phys. 43, 1978 (1965)CrossRefGoogle Scholar
  29. 29.
    B. Simondi-Teisseire, B. Viana, D. Vivien, A.M. Lejus, Opt. Mater. 6, 267 (1996)CrossRefGoogle Scholar
  30. 30.
    M. Lluscà, J. López-Vidrier, S. Lauzurica, M.I. Sánchez-Aniorte, A. Antony, C. Molpeceres, S. Hernández, B. Garrido, J. Bertomeu, J. Lumin. 167, 101 (2015)CrossRefGoogle Scholar
  31. 31.
    J. Li, S. Guo, E. Wang, RSC Adv. 2, 3579 (2012)CrossRefGoogle Scholar
  32. 32.
    S.F. Lim, R. Riehn, W.S. Ryu, N. Khanarian, C.K. Tung, D. Tank, R.H. Austin, Nano Lett. 6, 169 (2006)CrossRefGoogle Scholar
  33. 33.
    W.G. van Sark, J. de Wild, J.K. Rath, A. Meijerink, R.E.I. Schropp, Nanoscale Res. Lett. 8, 81 (2013)CrossRefGoogle Scholar
  34. 34.
    N. Rakov, R.B. Guimarães, G.S. Maciel, J. Lumin. 131, 342 (2011)CrossRefGoogle Scholar
  35. 35.
    T. Jung, H.L. Jo, S.H. Nam, B. Yoo, Y. Cho, J. Kim, H.M. Kim, T. Hyeon, Y.D. Suh, H. Lee, K.T. Lee, Phys. Chem. Chem. Phys. 17, 13201 (2015)CrossRefGoogle Scholar
  36. 36.
    A. Patra, C.S. Friend, R. Kapoor, P.N. Prasad, J. Phys. Chem. B 106, 1909 (2002)CrossRefGoogle Scholar
  37. 37.
    H. Lin, D. Xu, A. Li, Z. Qiu, S. Yang, Y. Zhang, New J. Chem. 41, 1193 (2017)CrossRefGoogle Scholar
  38. 38.
    B. Dong, B. Cao, Y. He, Z. Liu, Z. Li, Z. Feng, Adv. Mater. 24, 1987 (2012)CrossRefGoogle Scholar
  39. 39.
    P. Camarda, F. Messina, L. Vaccaro, S. Agnello, G. Buscarino, R. Schneider, D. Gerthsen, R. Lorenzi, F. Gelardi, M. Cannas, Phys. Chem. Chem. Phys. 18, 16237 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Xiaohui Zhang
    • 1
  • Haiming Zhang
    • 1
  • Lijuan Wei
    • 1
  • Yue Zhang
    • 1
  • Biao Zhang
    • 1
  1. 1.School of ScienceTianjin Polytechnic UniversityTianjinChina

Personalised recommendations