Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 17, pp 15052–15059 | Cite as

Synthesis and photoluminescence enhancement of Ca9La(VO4)7:Eu3+ red phosphors by Mg2+ co-doping for white LEDs

  • Mingfeng Dai
  • Kehui Qiu
  • Wentao Zhang
  • Qinxue Tang
Article
  • 43 Downloads

Abstract

Red-emitting phosphors of Ca9La(VO4)7:Eu3+, Mg2+ with different Mg2+ concentrations were synthesized by a citric acid-fueled combustion method. The structures and photoluminescence properties of the synthesized samples were researched by powder X-ray diffraction, scanning electron microscopy, and photoluminescence (PL) spectroscopy. The effects of the sintering temperature and Mg2+ concentration on the phase compositions, morphologies, PL properties, and fluorescent lifetimes of the obtained products were investigated. The results of XRD indicated that all of the resulting phosphors were composed of a single Ca9La(VO4)7 phase. The PL spectra suggested that the strongest emission peak centered at 618 nm arose from the 5D0 → 7F2 electric dipole transition of Eu3+ and that the emission intensity changed greatly with changes in the sintering temperature. Remarkably, the emission intensity of the Ca9La(VO4)7:Eu3+ phosphor could be drastically increased by co-doping with Mg2+. Furthermore, the color purity of the Ca9La(VO4)7:0.01Eu3+, 0.02Mg2+ phosphor was higher than that of the Ca9La(VO4)7:0.01Eu3+ phosphor. The Ca9La(VO4)7 phosphor co-doped with Eu3+ and Mg2+ could be effectively excited by blue light, suggesting its potential as a red phosphor for applications in white light-emitting diodes using blue-light excitation.

Notes

Acknowledgements

The authors acknowledge financial support from the Key Scientific and Technological Research and Development Program (Grant No. 2017GZ0400), Sichuan Province, P.R. China.

References

  1. 1.
    S. Yao, D. Chen, Combustion synthesis and luminescent properties of a new material Li2(Ba0.99,Eu0.01)SiO4:B3+ for ultraviolet light emitting diodes. Opt. Laser. Tehnol. 40, 466–471 (2008)CrossRefGoogle Scholar
  2. 2.
    L. Chen, C.C. Lin, C.W. Yeh, R.S. Liu, Light Converting Inorganic Phosphors for White Light-Emitting Diodes. Materials 3, 2172–2195 (2011)CrossRefGoogle Scholar
  3. 3.
    S.S. Pitale, M. Gohain, I.M. Nagpure, O.M. Ntwaeaborwa, B.C.B. Bezuidenhoudt, H.C. Swart, A comparative study on structural, morphological and luminescence characteristics of Zn3(VO4)2 phosphor prepared via hydrothermal and citrate-gel combustion routes. Phys. B 407, 1485–1488 (2012)CrossRefGoogle Scholar
  4. 4.
    Y. Wang, Y. Gong, X. Xu, Y. Li, Recent progress in multicolor long persistent phosphors. J. Lumin. 133, 25–29 (2013)CrossRefGoogle Scholar
  5. 5.
    T.W. Kuo, W.R. Liu, T.M. Chen, High color rendering white light-emitting-diode illuminator using the red-emitting Eu2+-activated CaZnOS phosphors excited by blue LED. Opt. Express 18, 8187–8192 (2010)CrossRefGoogle Scholar
  6. 6.
    H. Höppe, Recent developments in the field of inorganic phosphors. Angew. Chem. Int. Edit. 28, 3572–3582 (2010)Google Scholar
  7. 7.
    H.J. Reyher, N. Hausfeld, M. Pape, Attribution of the near-UV absorption bands of YAG:Ce to Ce3+-ions by MCD and ODMR. Solid State Commun. 110, 345–349 (1999)CrossRefGoogle Scholar
  8. 8.
    J. Gu, B. Yan, Hydrothermal synthesis and luminescent properties of Ca2V2O7:Eu3+ phosphors. J. Exp. Nanosci. 476, 619–623 (2009)Google Scholar
  9. 9.
    Y. Pu, K. Tang, D.C. Zhu, T. Han, C. Zhao, L.L. Peng, Synthesis and luminescence properties of (Y,Gd)(P,V)O4:Eu3+, Bi3+ red nano-phosphors with en-hanced photoluminescence by Bi3+, Gd3+ doping. Nano-Micro Lett. 5, 117–123 (2013)CrossRefGoogle Scholar
  10. 10.
    L. Li, X.G. Liu, H.M. Noh, J.H. Jeong, Chemical bond parameters and photoluminescence of a natural-white-light Ca9La(VO4)7:Tm3+,Eu3+ with one O2–  → V5+, charge transfer and dual f-f transition emission centers. J. Solid State Chem. 221, 95–101 (2015)CrossRefGoogle Scholar
  11. 11.
    K.H. Qiu, J.F. Li, J.F. Li, X.G. Lu, Y.C. Gong, J.H. Li, Luminescence property of Ca3(VO4)2:Eu3+ dependence on molar ratio of Ca/V and solution combustion synthesis temperature. J. Mater. Sci. 45, 5456–5462 (2010)CrossRefGoogle Scholar
  12. 12.
    T. Nakajima, M. Isobe, T. Tsuchiya, Y. Ueda, T. Manabe, Correlation between luminescence quantum efficiency and structural properties of vanadate phosphors with chained, dimerized, and isolated VO4 tetrahedra. J. Phys. Chem. C 114, 5160–5167 (2010)CrossRefGoogle Scholar
  13. 13.
    Q.L. Zhang, C.X. Guo, C.S. Shi, S.Z. Lü, High-resolution photoluminescence spectrum of GdVO4:Eu3+. J. Alloys Compd. 309, 10–15 (2000)CrossRefGoogle Scholar
  14. 14.
    N.F. Zhuang, X.F. Liu, Q.R. Xu, C. Xin, B. Zhao, X.L. Hu, J.Z. Chen, ChemInform abstract: crystal growth, nonlinear frequency-doubling and spectral characteristic of Nd:Ca9La(VO4)7, crysta. J. Alloys Compd. 595, 113–119 (2014)CrossRefGoogle Scholar
  15. 15.
    F.F. Yuan, W. Zhao, S.J. Sun, L.Z. Zhang, Y.S. Huang, Z.B. Lin, G.F. Wang, Polarized spectroscopic properties of Er3+:Ca9Y(VO4)7, crystal. J. Lumin. 154, 241–245 (2014)CrossRefGoogle Scholar
  16. 16.
    L.J. Yin, B. Dierre, T. Sekiguchi, J.O. Van, H. Hintzen, Y. Cho, Transition of emission colours as a consequence of heat-treatment of carbon coated Ce3+-doped YAG phosphors. Materials 10, 1180 (2017)CrossRefGoogle Scholar
  17. 17.
    L.J. Yin, C. Cai, H. Wang, Y.J. Zhao, H.V. Bui, X. Jian, H. Tang, X. Wang, L.J. Deng, X. Xu, M.H. Lee, Luminescent properties and microstructure of SiC doped AlON:Eu2+ phosphors. J. Alloys Compd. 725, 217–226 (2017)CrossRefGoogle Scholar
  18. 18.
    Y. Zeng, K.H. Qiu, Z.Q. Yang, Y.L. Pu, W.T. Zhang, J.F. Li, Enhanced red emission of NaSrVO4:Eu3+ phosphor via Bi3+ co-doping for the application to white LEDs. Ceram. Int. 43, 830–834 (2017)CrossRefGoogle Scholar
  19. 19.
    L.J. Yin, Y.L. Liang, S.H. Zhang, M. Wang, L.K. Li, W.J. Xie, H. Zhong, X. Jian, X. Xu, X. Wang, L.J. Deng, A novel strategy to motivate the luminescence efficiency of a phosphor: drilling nanoholes on the surface. Chem. Commun. 54, 3480–3483 (2018)Google Scholar
  20. 20.
    R. Gopal, C. Calvo, The structure of Ca3(VO4)2. Z. Krist. Cryst. Mater. 137, 67–85 (1973)Google Scholar
  21. 21.
    A.A. Belik, V.A. Morozov, S.S. Khasanov, B.I. Lazoryak, Crystal structures of double vanadates Ca9R(VO4)7: I. R = La, Pr, and Eu. Crystallogr. Rep. 42, 751–757 (1997)Google Scholar
  22. 22.
    K. Tonooka, O. Nishimura, Effect of calcination temperature on the luminescent properties of Tb-doped borosilicate glasses. J. Mater. Sci. 34, 5039–5044 (1999)CrossRefGoogle Scholar
  23. 23.
    K. Park, M.H. Heo, K.Y. Kim, S.J. Dhoble, Y. Kim, J.Y. Kim, Photoluminescence properties of nano-sized (Y0.5Gd0.5)PO4:Eu3+ phosphor powders synthesized by solution combustion method. Powder Technol. 237, 102–106 (2013)CrossRefGoogle Scholar
  24. 24.
    G. Blasse, The luminescence of closed-shell transition-metal complexes. New developments[M]. Luminescence and energy transfer. (Springer, Berlin, 1980), pp. 1–41Google Scholar
  25. 25.
    W.L. Zhu, Y.Q. Ma, C. Zhai, K. Yang, X. Zhang, D.D. Wu, G. Li, G.H. Zheng, Photoluminescence properties of Sr3(VO4)2, Sr2Y2/3–yEuy(VO4)2 and Sr2Y2/3–zSmz(VO4)2. Opt. Mater. 33, 1162–1166 (2011)CrossRefGoogle Scholar
  26. 26.
    Y.H. Bai, C.Y. Bai, G.L. Mo, Effects of Bi3+ ions on luminescence of dumbbell-like SrMoO4 and SrMoO4:Eu3+ microcrystals. Chem. Phys. Lett. 637, 127–131 (2015)CrossRefGoogle Scholar
  27. 27.
    J.W. Xie, Y.R. Shi, F. Zhang, G.Q. Li, CaSnO3:Tb3+, Eu3+: a distorted-perovskite structure phosphor with tunable photoluminescence properties. J. Mater. Sci. 51, 7471–7479 (2016)CrossRefGoogle Scholar
  28. 28.
    W.L. Zhu, Y.Q. Ma, C. Zhai, K. Yang, X. Zhang, D.D. Wu, Photoluminescence properties of Sr3(VO4)2, Sr2Y2/3–yEuy(VO4)2, and Sr2Y2/3–zSmz(VO4)2. Opt. Mater. 33, 1162–1166 (2011)CrossRefGoogle Scholar
  29. 29.
    R.R. Cui, C.Y. Deng, X.Y. Gong, X.C. Li, J.P. Zhou, Luminescence properties of Eu3+, doped CaBi2Ta2O9, bismuth layered-structure ferroelectrics. Mater. Res. Bull. 48, 4301–4306 (2013)CrossRefGoogle Scholar
  30. 30.
    D. Thangaraju, A. Durairajan, D. Balaji, S.M. Babu, Y. Hayakawa, Novel KGd1–(x+y)EuxBiy, (W1 – zMozO4)2, nanocrystalline red phosphors for tricolor white LEDs. J. Lumin. 134, 244–250 (2013)CrossRefGoogle Scholar
  31. 31.
    H.H. Lin, D.J. Hou, L. Li, Y. Tao, H.B. Liang, Luminescence and site occupancies of Eu3+ in La2CaB10O19. Dalton Trans. 42, 12891–12897 (2013)CrossRefGoogle Scholar
  32. 32.
    J.G. Li, Z.Y. Wu, X.Y. Sun, X.W. Zhang, R.C. Dai, J. Zuo, Z. Zhao, Controlled hydrothermal synthesis and luminescent properties of Y2WO6:Eu3+ nanophosphors for light-emitting diode. J. Mater. Sci. 52, 3110–3123 (2017)CrossRefGoogle Scholar
  33. 33.
    K. Park, M.H. Heo, H.J. Seo, Improvement in photoluminescence properties of (Y,Gd)(V1 – xPx)O4:Eu3+ phosphors by doping Al3+. Electron. Mater. Lett. 12, 315–322 (2016)CrossRefGoogle Scholar
  34. 34.
    M. Vijayakumar, K. Mahesvaran, D.K. Patel, S. Arunkumar, K. Marimuthu, Structural and optical properties of Dy3+ doped Aluminofluoroborophosphate glasses for white light applications. Opt. Mater. 37, 695–705 (2014)CrossRefGoogle Scholar
  35. 35.
    J.H. Zheng, Q.J. Cheng, S.Q. Wu, Z.Q. Guo, Y.X. Zhuang, Y.J. Lu, Y. Li, C. Chen, An efficient blue-emitting Sr5(PO4)3Cl:Eu2+ phosphor for application in near-UV white light-emitting diodes. J. Mater. Chem. C 3, 11219–11227 (2015)CrossRefGoogle Scholar
  36. 36.
    X.Y. Huang, H. Guo, B. Li, Eu3+-activated Na2Gd(PO4)(MoO4): a novel high-brightness red emitting phosphor with high color purity an quantum efficiency for white light-emitting diodes. J. Alloys Compd. 720, 29–38 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Mingfeng Dai
    • 1
  • Kehui Qiu
    • 2
  • Wentao Zhang
    • 1
  • Qinxue Tang
    • 2
  1. 1.College of Materials and Chemistry & Chemical EngineeringChengdu University of TechnologyChengduChina
  2. 2.Institute of Materials Science and TechnologyChengdu University of TechnologyChengduChina

Personalised recommendations