Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 17, pp 15029–15033 | Cite as

WO3−x for rapid adsorption and full-spectrum-responsive photocatalytic activities

  • Danqing LiuEmail author
  • Guilian Li
  • Chaoyue Zhao
  • Xiaoxue Wang
  • Menghan Sun
  • Xiaojun Sun
  • Mei YanEmail author
  • Chongshen GuoEmail author


Dual-purpose method for efficient removal of harmful organic dyes has been successfully realized by W18O49 nanostructure via fast absorption and advanced full-spectrum-responsive photocatalytic degradation from UV to near infrared (NIR). The removal more than 99% of MB could be finished as short as 1–2 min. The strong electrostatic interaction between the negative charged W18O49 surface and the cationic MB species is major reason for such a fast adsorption response. In addition, W18O49 nanostructure also could behave as photocatalyst for further degradation of MB. Advantages of W18O49 nanostructure used in this purpose benefit from its high optical absorption covering ultraviolet, visible light and NIR, which has good mineralizing ability under each spectrum, thus taking full use of solar energy. What is noteworthy, the regeneration of W18O49 after the absorption of MB could be simply realized by photo-irradiation process. As a result, it will be promising to use this dual-function material for deeply removal of organic dyes in wastewater.



The financial supports from the National Natural Science Foundation of China (Grant Nos. 51572059, 51602083 and 21676066) and the National Natural Science Foundation of Heilongjiang Province (Grant No. E2016042) are gratefully acknowledged.

Supplementary material

10854_2018_9641_MOESM1_ESM.docx (389 kb)
Supplementary material 1 (DOCX 389 KB)


  1. 1.
    B. Liu, J. Wang, J. Wu, H. Li, Z. Li, M. Zhou, T. Zuo, J. Mater. Chem. A 2, 1947 (2014)CrossRefGoogle Scholar
  2. 2.
    Y.M. Hunge, A.A. Yadav, M.A. Mahadik, V.L. Mathe, C.H. Bhosale, J. Taiwan Inst. Chem. Eng. 85, 273 (2018)CrossRefGoogle Scholar
  3. 3.
    Y.M. Hunge, M.A. Mahadik, V.S. Mohite, S.S. Kumbhar, N.G. Deshpande, K.Y. Rajpure, A.V. Moholkar, P.S. Patil, C.H. Bhosale, J. Mater. Sci.: Mater. Electron. 27, 1629 (2016)Google Scholar
  4. 4.
    D. Liu, Z. Zheng, C. Wang, Y. Yin, S. Liu, B. Yang, Z. Jiang, J. Phys. Chem. C 117, 26529 (2013)CrossRefGoogle Scholar
  5. 5.
    Y.M. Hunge, A.A. Yadav, V.L. Mathe, J. Mater. Sci.: Mater. Electron. 29, 6183 (2018)Google Scholar
  6. 6.
    Y.M. Hunge, A.A. Yadav, V.L. Mathe, Ultrason. Sonochem. 45, 116 (2018)CrossRefGoogle Scholar
  7. 7.
    G. He, J. Zhang, Y. Zhang, H. Chen, X. Wang, J. Disper. Sci. Technol. 34, 1223 (2013)CrossRefGoogle Scholar
  8. 8.
    Y.M. Hunge, A.A. Yadav, B.M. Mohite, V.L. Mathe, C.H. Bhosale, J. Mater. Sci.: Mater. Electron. 29, 3808 (2018)Google Scholar
  9. 9.
    W. Qin, D. Zhang, D. Zhao, L. Wang, K. Zheng, Chem. Commun. 46, 2304 (2010)CrossRefGoogle Scholar
  10. 10.
    Z.X. Li, F.B. Shi, T. Zhang, H.S. Wu, L.D. Sun, C.H. Yan, Chem. Commun. 47, 8109 (2011)CrossRefGoogle Scholar
  11. 11.
    G. Li, C.S. Guo, M. Yan, S.Q. Liu, Appl. Catal. B 183, 142 (2016)CrossRefGoogle Scholar
  12. 12.
    J. Tian, Y. Sang, G. Yu, H. Jiang, X. Mu, H. Liu, Adv. Mater. 25, 5075 (2013)CrossRefGoogle Scholar
  13. 13.
    G. Wang, B. Huang, X. Ma, Z. Wang, X. Qin, X. Zhang, Y. Dai, M.H. Whangbo, Angew. Chem. Int. Ed. 52, 4810 (2013)CrossRefGoogle Scholar
  14. 14.
    K. Thummavichai, L. Trimby, N. Wang, C.D. Wright, Y. Xia, Y. Zhu, J. Phys. Chem. C 121, 20498 (2017)CrossRefGoogle Scholar
  15. 15.
    C.S. Guo, S. Yin, M. Yan, M. Kobayashi, M. Kakihana, T. Sato, Inorg. Chem. 51, 4763 (2012)CrossRefGoogle Scholar
  16. 16.
    C.Y. Su, H.C. Lin, J. Phys. Chem. C 113, 4042 (2009)CrossRefGoogle Scholar
  17. 17.
    S. Jeon, K. Yong, J. Mater. Chem. 20, 10146 (2010)CrossRefGoogle Scholar
  18. 18.
    L. Zhang, H. Li, Y. Liu, Z. Tian, B. Yang, Z. Sun, S. Yan, RSC Adv. 4, 48703 (2014)CrossRefGoogle Scholar
  19. 19.
    L. Wang, Y. Yao, L. Sun, Y. Mao, W. Lu, S. Huang, W. Chen, Sep. Purif. Technol. 122, 449 (2014)CrossRefGoogle Scholar
  20. 20.
    L. Chen, S. Yamane, J. Mizukado, Y. Suzuki, S. Kutsuna, T. Uchimaru, H. Suda, Chem. Phys. Lett. 624, 87 (2015)CrossRefGoogle Scholar
  21. 21.
    Y. Yamakoshi, S. Aroua, T.D. Nguyen, Y. Iwamotoa, T. Ohnishi, Faraday Discuss. 173, 287 (2014)CrossRefGoogle Scholar
  22. 22.
    P. Wang, Y. Tang, Z. Dong, Z. Chen, T. Lim, J. Mater. Chem. A 1, 4718 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Chemical and Environmental EngineeringHarbin University of Science and TechnologyHarbinChina
  2. 2.Micro- and Nanotechnology Research CenterHarbin Institute of TechnologyHarbinChina

Personalised recommendations