Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 17, pp 15006–15021 | Cite as

Effect of lattice strain on structural, magnetic and dielectric properties of sol–gel synthesized nanocrystalline Ce3+ substituted nickel ferrite

  • M. Maria Lumina Sonia
  • S. Anand
  • V. Maria Vinosel
  • M. Asisi Janifer
  • S. Pauline
Article
  • 113 Downloads

Abstract

The rare earth ion cerium (Ce3+) doped nickel ferrite nanoparticles with a structural formula NiCexFe2−xO4 (0.0 ≤ x ≤ 0.1) were procured using the sol–gel technique. The structural and morphological analysis of the as prepared sample was done using the X-ray diffraction (XRD) and HRSEM studies. A more in-depth morphological study was facilitated using the TEM, HR-TEM and SAED analysis. The position of the various ions was studied using the FTIR spectroscopy. The magnetic response of the cerium doped parent sample was recorded at room temperature using the vibrating sample magnetometer. The dielectric response of the synthesized sample was observed and analyzed at different temperatures for various frequencies. The well resolved broad peaks in the XRD pattern clearly indicated the nanosized, single phased, cubic spinel nature of these samples. There was a substantial decrease in the crystallite size on doping with cerium. Cerium was successfully substituted into the spinel lattice without any distortion. The TEM investigation revealed random shaped, sharp edged nanoparticles with a normally facetted morphology. The presence of distinctive diffractions spots on the SAED pattern indicated the formation of nanoparticles that are highly crystalline in nature. The FTIR analysis revealed a slight shift in the octahedral absorption band at γ2 towards the lower frequency side with the incorporation of cerium ions. The magnetic properties have been seen to be altered by the addition of Ce3+ in the Ni ferrite matrix. The decrease in the saturation magnetization with the increase in Ce3+ content rendered the synthesized sample applicable in field of antenna construction. This change will be also suitable for reducing the size of the antenna. The variation of the dielectric constant with frequency indicated a monotonous decrease with increasing frequency which is a typical dielectric response of ferrites.

References

  1. 1.
    Mahindrakar Rohini, S.G. Algude, D.S. Birajdar, J. Phys. 1(1), 14–19 (2010)Google Scholar
  2. 2.
    B.P. Rao, K.H. Rao, A.P. Rao, T.V. Rao, Pandarua, O.F. Caltun, J. Optoelectron. Adv. Mater. 7, 701 (2005)Google Scholar
  3. 3.
    A. Sobhani-Nasab, A. Ziarati, M. Rahimi-Nasrabadi, M.R. Ganjali, A. Badiei, Res. Chem. Intermed. 43, 6155–6165 (2017)CrossRefGoogle Scholar
  4. 4.
    C.V. Gopal Reddy, S.V. Manorama, V.J. Rao, Sens. Actuators B 55(1), 90–95 (1999)CrossRefGoogle Scholar
  5. 5.
    C.P. Luo, S.H. Liou, L. Gao, Appl. Phys. Lett. 77, 2225–2227 (2000)CrossRefGoogle Scholar
  6. 6.
    M. Rahimi-Nasrabadi, M. Behpour, A. Sobhani-Nasab, S.M. Hosseinpour-Mashkani, J. Mater. Sci.: Mater. Electron. 26, 9776–9781 (2015)Google Scholar
  7. 7.
    L.A. Vermenko, T.Y. Gridasova, E.N. Lukachina, Sov. Powder Metall. Met. Ceram. 12(9), 732–735 (1973)CrossRefGoogle Scholar
  8. 8.
    Z. Zhang, Y. Liu, G. Yao, G. Zu, Y. Hao, Int. J. Appl. Ceram. Technol. 10, 142 (2013)CrossRefGoogle Scholar
  9. 9.
    J.E. Rosen, L. Chan, D.B. Shieh, F.X. Gu, Nanomedicine 8, 275 (2012)CrossRefGoogle Scholar
  10. 10.
    N.A. Frey, S. Peng, K. Cheng, S. Sun, Chem. Soc. Rev. 38, 2532 (2009)CrossRefGoogle Scholar
  11. 11.
    G. Dixit, P. Negi, J.P. Singh, R.C. Srivastava, H.M. Agrawal, J. Supercond. Novel Magn. 26(4), 1015–1019 (2013)CrossRefGoogle Scholar
  12. 12.
    M.A. Ahmed, E. Ateia, G. Abdelatif, F.M. Salem, Mater. Chem. Phys. 81, 63–77 (2003)CrossRefGoogle Scholar
  13. 13.
    K.K. Bharathi, G. Markandeyulu, J. Appl. Phys. 103, 07E309 (2008)CrossRefGoogle Scholar
  14. 14.
    S. Rathod, V.G. Deonikar, P.P. Mirage, Adv. Sci. Lett. 22(4), 964–966 (2016)CrossRefGoogle Scholar
  15. 15.
    S.S. Jadhav, S.E. Shirsath, B.G. Toksha, S.M. Patange, S.J. Shukla, K.M. Jadhav, Int. J. Mod. Phys. B 23, 5629 (2009)CrossRefGoogle Scholar
  16. 16.
    J. Giri, T. Sriharsha, D. Bahadur, J. Mater. Chem. 14, 875 (2004)CrossRefGoogle Scholar
  17. 17.
    H. Sato, T. Hameda, IEEE Magn. Trans. 34, 76 (1993)Google Scholar
  18. 18.
    A.K. Nikumbh, R.A. Pawar, D.V. Nighot, G.S. Gugale, M.D. Sangale, M.B. Khanvilkar, A.V. Nagawade, J. Magn. Magn. Mater. 355, 201–209 (2014)CrossRefGoogle Scholar
  19. 19.
    J. Depeyrot, E.C. Sousa, R. Aquino, F.A. Tourinho, E. Dubois, J.-C. Bacri, R. Perzynski, J. Magn. Magn. Mater. 252, 375–377 (2002)CrossRefGoogle Scholar
  20. 20.
    M. Yehia, S.M. Ismail, A. Hashhash, J. Supercond. Novel Magn. 37, 771–774 (2014)CrossRefGoogle Scholar
  21. 21.
    M. Rahimi-Nasrabadi, M. Behpour, A. Sobhani-Nasab, M.R. Jeddy, J. Mater. Sci.: Mater. Electron. 27, 11691–11697 (2016)Google Scholar
  22. 22.
    J. Zhou, J. Ma, C. Sun, L. Xie, Z. Zhao, H. Tian, J. Am. Ceram. Soc. 88, 3535–3537 (2005)CrossRefGoogle Scholar
  23. 23.
    B.D. Cullity, Elements of X-ray diffraction (Addison-Wesley, London, 1967)Google Scholar
  24. 24.
    A. Ziarati, A. Sobhani-Nasab, M. Rahimi-Nasrabadi, M.R. Ganjali, A. Badiei, J. Rare Earths 35, 374–381 (2017)CrossRefGoogle Scholar
  25. 25.
    S. Anand, A.P. Amaliya, M. Asisi Janifer, S. Pauline, Mod. Electron. Mater. 3, 168–173 (2017)CrossRefGoogle Scholar
  26. 26.
    V. Kumar, A. Rana, M.S. Yadav, R.P. Pant, J. Magn. Magn. Mater. 320, 1729–1734 (2008)CrossRefGoogle Scholar
  27. 27.
    P. Priyadharsini, A. Pradeep, P.S. Rao, G. Chandrasekaran, Mater. Chem. Phys. 116(1), 207–213 (2009)CrossRefGoogle Scholar
  28. 28.
    R.D. Waldron, Phys. Rev. 99, 1727–1735 (1955)CrossRefGoogle Scholar
  29. 29.
    V. Naidu, S.K.A. Ahamed, M. Sheik Dawood, M. Suganthi, Int. J. Comput. Appl. 24(2), 0975–8887 (2011)Google Scholar
  30. 30.
    R.G. Kulkarni, H. Joshi, J. Solid State Chem. 64, 141 (1986)CrossRefGoogle Scholar
  31. 31.
    S. Dey, A. Roy, D. Das, J. Ghose, J. Magn. Magn. Mater. 270(1–2), 224–229 (2004)CrossRefGoogle Scholar
  32. 32.
    J. Smit, H.P.J. Wijn, Ferrites (Wiley, New York, 1959), p. 265Google Scholar
  33. 33.
    E. Rezlescu, N. Rezlescu, P.D. Popa, L. Rezlescu, C. Pasnicu, Phys. Status Solidi 162, 673–678 (1997)CrossRefGoogle Scholar
  34. 34.
    S.K.A. Ahamed Kandu Sahib, M. Suganthi, V. Naidu, S. Pandian, M. Sivabharathy, Int. J. ChemTech Res. 6(11), 4608–4614 (2014)Google Scholar
  35. 35.
    K. Muthuraman, S. Algarsamy, M. Ameena Banu, V. Naidu, Int. J. Comput. Appl. 32(3), 0975–8887 (2011)Google Scholar
  36. 36.
    B. Parvatheeswara Rao, O. Caltun, W.S. Cho, C.O. Kim, C. Kim, J. Magn. Magn. Mater. 310(2), e812–e814 (2007)CrossRefGoogle Scholar
  37. 37.
    Y.L.N. Murthy, I.V. Kasi Viswanath, T. Kondala Rao, Rajendrasingh, Int. J. ChemTech Res. 1(4), 1308–1311 (2009)Google Scholar
  38. 38.
    E.C. Stoner, E.P. Wohlfarth, Philos. Trans. R. Soc. Lond. 240, 599–642 (1948)CrossRefGoogle Scholar
  39. 39.
    J. Peng, M. Hojamberdiev, Y. Xu, B. Cao, J. Wang, H. Wu, J. Magn. Magn. Mater. 323, 133–138 (2011)CrossRefGoogle Scholar
  40. 40.
    K.K. Bharathi, J.A. Chelvane, G. Markandeyulu, J. Magn. Magn. Mater. 321, 3677–3680 (2009)CrossRefGoogle Scholar
  41. 41.
    R. Topkaya, J. Alloys Compd. 725, 1230–1237 (2017)CrossRefGoogle Scholar
  42. 42.
    A.M. Alsmadi, I. Bsoul, S.H. Mahmood, G. Alnawashi, K. Prokeš, K. Siemensmeyer, B. Klemke, H. Nakotte, J. Appl. Phys. 114, 243910–243918 (2013)CrossRefGoogle Scholar
  43. 43.
    A. Verma, A.K. Saxena, D. Dube, J. Magn. Magn. Mater. 263, 228–234 (2003)CrossRefGoogle Scholar
  44. 44.
    C.G. Koops, Phys. Rev. 83, 121–126 (1951)CrossRefGoogle Scholar
  45. 45.
    S.S. Jadhav, S.E. Shirsath, B.G. Toksha, S.M. Patange, D.R. Shengule, K.M. Jadhav, Phys. B 405(12), 2610–2614 (2010)CrossRefGoogle Scholar
  46. 46.
    K. Iwauchi, J. Appl. Phys. 10, 1520–1528 (1971)CrossRefGoogle Scholar
  47. 47.
    J.J. Green, J.S. Waugh, B.J. Healy, J. Appl. Phys. 35(3), 482 (1964)CrossRefGoogle Scholar
  48. 48.
    K.M. Batoo, S. Kumar, C.G. Lee, Alimuddin, J. Alloys Compd. 480, 596–604 (2009)CrossRefGoogle Scholar
  49. 49.
    J.C. Maxwell, Electricity and magnetism, vol. 1 (Oxford University Press, New York, 1973), p. 828Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • M. Maria Lumina Sonia
    • 1
  • S. Anand
    • 1
  • V. Maria Vinosel
    • 1
  • M. Asisi Janifer
    • 1
  • S. Pauline
    • 1
  1. 1.Department of PhysicsLoyola College (Autonomous)ChennaiIndia

Personalised recommendations