Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 17, pp 14995–15005 | Cite as

Elucidation of microwave absorption mechanisms in Co–Ga substituted Ba–Sr hexaferrites in X-band

  • Harsimrat Kaur
  • Charanjeet Singh
  • Anupma Marwaha
  • Sukhleen Bindra Narang
  • Rajshree Jotania
  • Sanjay R. Mishra
  • Yang Bai
  • K. C. James Raju
  • Dharmendra Singh
  • Madhav Ghimire
  • Preksha Dhruv
  • A. S. B. Sombra
Article
  • 15 Downloads

Abstract

The tunable microwave absorbers are used to combat the electromagnetic pollution created by the development of high speed electronic devices. In the present paper, we report microwave absorption characteristics of M-type Ba0.5Sr0.5CoxGaxFe12−2xO19 (x = 0.0, 0.2, 0.4, 0.6, 0.8 and 1.0) hexagonal ferrite compositions prepared by using double sintering ceramic method. X-ray diffraction analysis of the prepared compositions revealed the formation of M-phase along with the minor traces of hematite in substituted compositions. The microwave absorption has been elucidated substantially through various mechanisms in the test frequency range from 8.2 to 12.4 GHz, which is still partially explored in literature. The substitution of Co2+ and Ga3+ ions enhances microwave absorption, bandwidth, decreases thickness and improves impedance matching. The hysteresis parameters also comply with the microwave absorption. The optimal reflection loss of − 29.74 dB is observed in the composition x = 0.2 at 8.28 GHz with 2.0 mm thickness. The investigated mechanisms of microwave absorption can be incorporated to optimize the absorption and design of the microwave absorbers.

References

  1. 1.
    R. Taherian, A. Soleymani, S.A. Manafi, IEEE Magn. Lett. 7, 1 (2016)CrossRefGoogle Scholar
  2. 2.
    C. Li, B. Wang, J. Wang, J. Magn. Magn. Mater. 324, 1305 (2012)CrossRefGoogle Scholar
  3. 3.
    M. Radwan, M.M. Rashad, M.M. Hessien, J. Mater. Process. Technol. 181, 106 (2007)CrossRefGoogle Scholar
  4. 4.
    D. Guo, P. Zhou, J. Hou, X. Luo, X. Wang, L. Deng, IEEE Trans. Magn. 51, 1 (2015)Google Scholar
  5. 5.
    I.S. Unver, Z. Durmus, IEEE Trans. Magn. 53, 1 (2017)CrossRefGoogle Scholar
  6. 6.
    J. Singh, C. Singh, D. Kaur, S.B. Narang, R. Jotania, R. Joshi, J. Mater. Sci.-Mater. Electron. 28, 2377 (2017)CrossRefGoogle Scholar
  7. 7.
    J. Singh, C. Singh, D. Kaur, S.B. Narang, R. Joshi, S. Mishra, R. Jotania, M. Ghimire, C.C. Chauhan, Mater. Des. 110, 749 (2016)CrossRefGoogle Scholar
  8. 8.
    K.C.B. Naidu, S. RoopasKiran, W. Madhuri, IEEE Trans. Magn. 53, 1 (2017)CrossRefGoogle Scholar
  9. 9.
    I. Sadiq, S. Naseem, M.N. Ashiq, M.A. Iqbal, I. Ali, M.A. Khan, S. Niaz, M.U. Rana, J. Magn. Magn. Mater. 395, 159 (2015)CrossRefGoogle Scholar
  10. 10.
    K.-K. Ji, Y. Li, M.-S. Cao, J. Mater. Sci. Mater. Electron. 27, 5128 (2016)CrossRefGoogle Scholar
  11. 11.
    R.S. Alam, M. Moradi, M. Rostami, H. Nikmanesh, R. Moayedi, Y. Bai, J. Magn. Magn. Mater. 381, 1 (2015)CrossRefGoogle Scholar
  12. 12.
    Y. Cheng, X. Ren, J. Mater. Sci. Mater. Electron. 27, 772 (2016)CrossRefGoogle Scholar
  13. 13.
    S.S. Li, K. Xiong, P. Meng, X. Ren, G. Xu, J. Mater. Sci. Mater. Electron. 26, 5710 (2015)Google Scholar
  14. 14.
    J.-M. Ali-Sharbati, V. Khani, J. Mater. Sci. Mater. Electron. 25, 244 (2014)CrossRefGoogle Scholar
  15. 15.
    H. Nikmanesh, M. Moradi, G.H. Bordbar, R.S. Alam, J. Alloys Compd. 708, 99 (2017)CrossRefGoogle Scholar
  16. 16.
    N.N. Song, Y.J. Ke, H.T. Yang, H. Zhang, X.Q. Zhang, B.G. Shen, Z.H. Cheng, Sci. Rep. 2291, 1 (2013)Google Scholar
  17. 17.
    Y. Ding, Q.L. Liao, S. Liu, H.J. Guo, Y. H.Sun, G.J. Zhang, Y. Zhang, Sci. Rep. 6, 1 (2016)CrossRefGoogle Scholar
  18. 18.
    B. Belaabed, S. Lamouri, J.L. Wojkiewicz, IEEE Trans. Magn. 54, 1 (2018)CrossRefGoogle Scholar
  19. 19.
    Y. Wu, M. Han, L. Deng, IEEE Trans. Magn. 51, 1 (2015)Google Scholar
  20. 20.
    Z.W. Li, Z.H. Yang, J. Magn. Magn. Mater. 387, 131 (2015)CrossRefGoogle Scholar
  21. 21.
    H. Sözeri, F. Genç, B. Ünal, A. Baykal, B. Aktaş, J. Alloys Compd. 660, 324 (2016)CrossRefGoogle Scholar
  22. 22.
    J. Singh, C. Singh, D. Kaur, S.B. Narang, R. Jotania, R. Joshi, J. Alloys Compd. 695, 792 (2017)CrossRefGoogle Scholar
  23. 23.
    A. Baykal, S. Yokuş, S. Güner, H. Güngüneş, H. Sözeri, M. Amir, Ceram. Int. 43, 3475 (2017)CrossRefGoogle Scholar
  24. 24.
    S.V. Trukhanov, A.V. Trukhanov, V.G. Kostishyn, L.V. Panina, A.V. Trukhanov, V.A. Turchenko, D.I. Tishkevich, E.L. Trukhanova, O.S. Yakovenko, L.Y. Matzui, D.A. Vinnik, D.V. Karpinsky, J. Phys. Chem. Solids 111, 142 (2017)CrossRefGoogle Scholar
  25. 25.
    C. Singh, S.B. Narang, I.S. Hudiara, Y. Bai, F. Tabatabaei, Mater. Res. Bull. 43, 176 (2008)CrossRefGoogle Scholar
  26. 26.
    R. Waldron, Phys. Rev. 99, 1727 (1955)CrossRefGoogle Scholar
  27. 27.
    N. Solanki, R.B. Jotania, Solid State Phenom. 241, 226 (2016)CrossRefGoogle Scholar
  28. 28.
    N. Rezlescu, C. Doroftei, E. Rezlescu, P.D. Popa, Sensor. Actuat. B 115, 589 (2006)CrossRefGoogle Scholar
  29. 29.
    T.R. Wagner, J. Solid State Chem. 136, 120 (1998)CrossRefGoogle Scholar
  30. 30.
    J. Xu, G. Ji, H. Zou, Y. Song, S. Gan, J. Magn. Magn. Mater. 323, 157 (2011)Google Scholar
  31. 31.
    R. Skomki, J.M.D. Coey, Permanent magnetism, British Library Cataloguing-in Publication Data. ISBN: 0750304782Google Scholar
  32. 32.
    S. Alamolhoda, S.M. Mirkazemi, Z. Ghiami, M. Niyaifar, Bull. Mater. Sci. 39, 1311 (2016)CrossRefGoogle Scholar
  33. 33.
    R. Kumar, R. Kr. M. Singh, M. Kumar Zope, Kar, Mater. Sci. Eng. B 220, 73 (2017)CrossRefGoogle Scholar
  34. 34.
    L.M. Ridgway, Magneto-dieletric properties of bismuth substituted barium hexaferrite (thesis), University of Nottingham (2011)Google Scholar
  35. 35.
    T. Kaur, J. Sharma, S. Kumar, A.K. Srivastava, Cryst. Res. Technol. 52, 1700098 (2017)CrossRefGoogle Scholar
  36. 36.
    Y.O. Maswadeh, Structural Analysis Of Hexaferrite Materials (thesis), The University of Jordan (2014)Google Scholar
  37. 37.
    H. Lv, G. Ji, H. Zhang, M. Li, Z. Zuo, Y. Zhao, B. Zhang, D. Tang, Y. Du, Sci. Rep. 5, 1 (2015)Google Scholar
  38. 38.
    A.M. Abdeen, J. Magn. Magn. Mater. 192, 121 (1999)CrossRefGoogle Scholar
  39. 39.
    Y. Du, W. Liu, R. Qiang, Y. Wang, X. Han, J. Ma, P. Xu, ACS Appl. Mater. Interfaces 6, 12997 (2014)CrossRefGoogle Scholar
  40. 40.
    M. Wu, Y. Zhang, S. Hui, T. Xiao, S. Ge, W. Hines, J. Budnick, G. Taylor, Appl. Phys. Lett. 80, 4404 (2002)CrossRefGoogle Scholar
  41. 41.
    B. Wang, J. Wei, Y. Yang, T. Wang, F. Li, J. Magn. Magn. Mater. 323, 1101 (2011)CrossRefGoogle Scholar
  42. 42.
    T. Inui, K. Konishi, K. Oda, IEEE Trans. Magn. 35, 3148 (1999)CrossRefGoogle Scholar
  43. 43.
    X. Wang, L. Sun, X. Bao, G. Shi, J. Mater. Sci.-Mater. Electron. 28, 10457 (2017)CrossRefGoogle Scholar
  44. 44.
    R. Grossinger, J. Magn. Magn. Mater. 28, 137 (1982)CrossRefGoogle Scholar
  45. 45.
    G.M. Suarez, L.P.R. Vazquez, J.C.C. Huacuz, A.F. Fuentes, J. I. E.Garcıa, Phys. B 339, 110 (2003)Google Scholar
  46. 46.
    S. Zahi, M. Hashim, A. Daud, J. Magn. Magn. Mater. 308, 177 (2007)CrossRefGoogle Scholar
  47. 47.
    A. Ghasemi, A. Morisako, J. Alloys Compd. 456, 485 (2008)CrossRefGoogle Scholar
  48. 48.
    S.E. Jacobo, P.G. Bercoff, Solid State Phenom. 202, 113 (2013)CrossRefGoogle Scholar
  49. 49.
    J.F. Wang, C.B. Ponton, R. Grossinger, I.R. Harris, J. Alloys Compd. 369, 170 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Harsimrat Kaur
    • 1
    • 10
  • Charanjeet Singh
    • 2
  • Anupma Marwaha
    • 1
  • Sukhleen Bindra Narang
    • 3
  • Rajshree Jotania
    • 4
  • Sanjay R. Mishra
    • 5
  • Yang Bai
    • 6
  • K. C. James Raju
    • 7
  • Dharmendra Singh
    • 8
  • Madhav Ghimire
    • 5
  • Preksha Dhruv
    • 4
  • A. S. B. Sombra
    • 9
  1. 1.Department of Electronics and Communication EngineeringSant Longowal Institute of Engineering and Technology, LongowalSangrurIndia
  2. 2.Department of Electronics and Communication EngineeringLovely Professional UniversityPhagwaraIndia
  3. 3.Department of Electronics TechnologyGuru Nanak Dev UniversityAmritsarIndia
  4. 4.Department of Physics, Electronics and Space Science, University School of SciencesGujarat UniversityAhmedabadIndia
  5. 5.Department of Physics and Materials ScienceUniversity of MemphisMemphisUSA
  6. 6.Institute of Advanced Materials and TechnologyUniversity of Science and Technology BeijingBeijingChina
  7. 7.School of PhysicsUniversity of HyderabadHyderabadIndia
  8. 8.Department of Electronics and Communication EngineeringIndian Institute of TechnologyRoorkeeIndia
  9. 9.Department of PhysicsTelecommunications and Materials Science and Engineering Laboratory (LOCEM), Federal University of Ceara-UFCFortalezaBrazil
  10. 10.Department of Electronics and Communication EngineeringCT Institute of Engineering and Management TechnologyJalandharIndia

Personalised recommendations