Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 17, pp 14989–14994 | Cite as

Fabrication of stabilized and dispersive copper nanowires ink

  • Meng Yuan
  • Jing Xu
  • Qiang Chen
  • Dongsheng Li
  • Deren Yang
Article
  • 45 Downloads

Abstract

In this paper, an organic stabilized and dispersive Cu nanowires (NWs) ink was proposed. We investigated and determined the recipe of the expectant ink framework and proved its usage as flexible transparent conductive films. The influences of main solutes on stability and dispersity of the ink were discussed detailedly. The stability was evaluated by the sedimentation time of the ink and the dispersity was weighed by the morphology of the freely-dispersed Cu NWs ink on substrates. The electric properties of the following conductive films were obatained by Hall effect measurement system. A simple and efficient method has carried out for fabricating the transparent electrodes from the prepared Cu NWs ink. These electrodes possessed a good performance in both conductivity and transmittance, which verified the pragmaticality of suggested Cu NWs ink as well. Typically, the sheet resistances of the processed electrodes made by the plasma enhanced chemical vapor deposition technique were about 80 Ω·sq−1, and the light transmittances at 550 nm were over 80%. The figures of merit of them were over 10−3 Ω−1.

Notes

Acknowledgements

The authors thank the support of the National Natural Science Foundation of China (No. 61721005).

References

  1. 1.
    H. Hwang, A. Kim, Z. Zhong, H. Kwon, S. Jeong, J. Moon, Adv. Funct. Mater. 26, 6545 (2016)CrossRefGoogle Scholar
  2. 2.
    S. Ding, Y. Tian, J. Jiu, K. Suganuma, RSC Adv. 8, 2109 (2018)CrossRefGoogle Scholar
  3. 3.
    X. Wang, R. Wang, L. Shi, J. Sun, J. Mater. Chem. C 6, 1048 (2018)CrossRefGoogle Scholar
  4. 4.
    Y. Ahn, Y. Jeong, D. Lee, Y. Lee, ACS Nano 9, 3125 (2015)CrossRefGoogle Scholar
  5. 5.
    H. Guo, N. Lin, Y. Chen, Z. Wang, Q. Xie, T. Zheng, N. Gao, S. Li, J. Kang, D. Cai, D. Peng, Sci. Rep. 3, 2323 (2013)CrossRefGoogle Scholar
  6. 6.
    H. Chu, Y. Chang, Y. Lin, S. Chang, W. Chang, G. Li, H. Tuan, ACS Appl. Mater. Interface 8, 13009 (2016)CrossRefGoogle Scholar
  7. 7.
    S. Han, S. Hong, J. Ham, J. Yeo, J. Lee, B. Kang, P. Lee, J. Kwon, S.S. Lee, M. Yang, S.H. Ko, Adv. Mater. 26, 5808 (2014)CrossRefGoogle Scholar
  8. 8.
    H. Im, S. Jung, J. Jin, D. Lee, J. Lee, D. Lee, J. Lee, I. Kim, B. Bae, ACS Nano 8, 10973 (2014)CrossRefGoogle Scholar
  9. 9.
    J. Liang, H. Bi, D. Wan, F. Huang, Adv. Funct. Mater. 22, 1267 (2012)CrossRefGoogle Scholar
  10. 10.
    D.P. Langley, G. Giusti, M. Lagrange, R. Collins, C. Jiménez, Y. Bréchet, D. Bellet, Sol. Energy Mater. Sol. C 125, 318 (2014)CrossRefGoogle Scholar
  11. 11.
    C. Preston, Z. Fang, J. Murray, H. Zhu, J. Dai, J.N. Munday, L. Hu, J. Mater. Chem. C 2, 1248 (2014)CrossRefGoogle Scholar
  12. 12.
    B. Sciacca, J. van de Groep, A. Polman, E.C. Garnett, Adv. Mater. 28, 905 (2016)CrossRefGoogle Scholar
  13. 13.
    S. De, T.M. Higgins, P.E. Lyons, E.M. Doherty, P.N. Nirmalraj, W.J. Blau, J.J. Boland, J.N. Coleman, ACS Nano 3, 1767 (2009)CrossRefGoogle Scholar
  14. 14.
    Z. Wu, A.F. Hebard, A.G. Rinzler, Z. Chen, X. Du, J.M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J.R. Reynolds, D.B. Tanner, Science 305, 1273 (2004)CrossRefGoogle Scholar
  15. 15.
    S.L. Hellstrom, H.W. Lee, Z. Bao, ACS Nano 3, 1423 (2009)CrossRefGoogle Scholar
  16. 16.
    S. Bae, H. Kim, Y. Lee, X. Xu, J. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. Ri Kim, Y.I. Song, Y. Kim, K.S. Kim, B. Özyilmaz, J. Ahn, B.H. Hong, S. Iijima, Nat. Nanotechnol. 5, 574 (2010)CrossRefGoogle Scholar
  17. 17.
    Z. Liu, P. You, C. Xie, G. Tang, F. Yan, Nano Energy 28, 151 (2016)CrossRefGoogle Scholar
  18. 18.
    A. Kim, Y. Won, K. Woo, C. Kim, J. Moon, ACS Nano 7, 1081 (2013)CrossRefGoogle Scholar
  19. 19.
    C.Y. Jiang, X.W. Sun, K.W. Tan, G.Q. Lo, A.K.K. Kyaw, D.L. Kwong, Appl. Phys. Lett. 92, 143101 (2008)CrossRefGoogle Scholar
  20. 20.
    H. Guo, Y. Chen, H. Ping, J. Jin, D. Peng, Nanoscale 5, 2394 (2013)CrossRefGoogle Scholar
  21. 21.
    A.R. Rathmell, M. Nguyen, M. Chi, B.J. Wiley, Nano Lett. 12, 3193 (2012)CrossRefGoogle Scholar
  22. 22.
    J. Song, J. Li, J. Xu, H. Zeng, Nano Lett. 14, 6298 (2014)CrossRefGoogle Scholar
  23. 23.
    N. Kholmanov, S.H. Domingues, H. Chou, X. Wang, C. Tan, J. Kim, H. Li, R. Piner, A.J.G. Zarbin, R.S. Ruoff, ACS Nano 7, 1811 (2013)CrossRefGoogle Scholar
  24. 24.
    Y. Cheng, S. Wang, R. Wang, J. Sun, L. Gao, J. Mater. Chem. C 2, 5309 (2014)CrossRefGoogle Scholar
  25. 25.
    S. Ye, A.R. Rathmell, I.E. Stewart, Y.C. Ha, A.R. Wilson, Z. Chen, B.J. Wiley, Chem. Commun. 50, 9228 (2014)CrossRefGoogle Scholar
  26. 26.
    A.R. Rathmell, B.J. Wiley, Adv. Mater. 23, 4798 (2011)CrossRefGoogle Scholar
  27. 27.
    M. Koczkur, S. Mourdikoudis, L. Polavarapu, S.E. Skrabalak, Dalton Trans. 2015, 17883 (2015)CrossRefGoogle Scholar
  28. 28.
    G. Bandekar, N.S. Rajurkar, I.S. Mulla, U.P. Mulik, D.P. Amalnerkar, P.V. Adhyapak, Appl. Nanosci. 4, 199 (2014)CrossRefGoogle Scholar
  29. 29.
    Y. Zhao, Y. Zhang, Y. Li, Z. He, Z. Yan, RSC Adv. 2, 11544 (2012)CrossRefGoogle Scholar
  30. 30.
    G. Haacke, J. Appl. Phys. .47, 4086 (1976)CrossRefGoogle Scholar
  31. 31.
    A.V. Moholkar, S.M. Pawar, K.Y. Rajpure, V. Ganesan, C.H. Bhosale, J. Alloy. Compd. 464, 387 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Silicon Materials and School of Materials Science and EngineeringZhejiang UniversityHangzhouPeople’s Republic of China

Personalised recommendations