Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 17, pp 14971–14980 | Cite as

Facile synthesis of Cu nanoparticles on different morphology ZrO2 supports for catalytic hydrogen generation from ammonia borane

  • Jianjun Zhu
  • Lirong Ma
  • Jin Feng
  • Tianli Geng
  • Wei Wei
  • Jimin Xie
Article
  • 80 Downloads

Abstract

In this paper, the X% Cu–ZrO2 (X = 0, 1, 5, 10, 15 and 20) xerogel catalysts have been successfully synthesized via a facile two-step approach involving epoxide-driven sol–gel method followed by chemical reduction. The series xerogel catalysts were characterized using XRD, SEM–EDS, TEM, XPS, H2-TPR, N2 adsorption–desorption and FT-IR. The results showed that the morphologies of ZrO2 partly have changed from bulk to nanorods with the increase in Cu loading from 0 to 20%. The catalysts exerted Cu content-dependent activities towards the catalytic hydrolysis of ammonia borane (AB). Among them, the 15% Cu–ZrO2 showed the best catalytic activity that the maximum hydrogen generation rate was 0.384 mol min−1. The hydrolysis reaction towards AB was proved to the first order by the 15% Cu–ZrO2 xerogel by kinetic studies. The activation energy was calculated to be 22.34 kJ mol−1. Even after five recycle experiment, the catalysts also showed a good recycle stability in aqueous solution.

Notes

Acknowledgements

We acknowledge the financial support from the National Natural Science Foundation of China (21607063, 21676129), China Postdoctoral Science Foundation (2018M630530), the Science & Technology Foundation of Zhenjiang (GY2017001).

References

  1. 1.
    L. Schlapbach, A. Zuttel, Nature 414, 353–358 (2001)CrossRefGoogle Scholar
  2. 2.
    Y. Hu, Y. Wang, Z.H. Lu, X. Chen, L. Xiong, Appl. Surf. Sci. 341, 185–189 (2015)CrossRefGoogle Scholar
  3. 3.
    Q.L. Zhu, N. Tsumori, Q. Xu, Chem. Sci. 5, 195–199 (2014)CrossRefGoogle Scholar
  4. 4.
    A. Rossin, M. Peruzzini, Chem. Rev. 116, 8848–8872 (2016)CrossRefGoogle Scholar
  5. 5.
    W.W. Zhan, Q.L. Zhu, Q. Xu, ACS Catal. 6, 6892–6905 (2016)CrossRefGoogle Scholar
  6. 6.
    A. Rossin, G. Tuci, L. Luconi, G. Giambastiani, ACS Catal. 7, 5035–5045 (2017)CrossRefGoogle Scholar
  7. 7.
    B. Zhao, J. Liu, L. Zhou, D. Long, K. Feng, X. Sun, J. Zhong, Appl. Catal. Sci. 362, 79–85 (2016)CrossRefGoogle Scholar
  8. 8.
    Q.L. Yao, X.S. Chen, Z.H. Lu, Energy Environ. Focus 3, 236–245 (2014)CrossRefGoogle Scholar
  9. 9.
    A. Yousef, N.A.M. Barakat, M.H. El-Newehy, M.M. Ahmed, H.Y. Kim, Colloid Surf. A 470, 194–201 (2015)CrossRefGoogle Scholar
  10. 10.
    K. Mori, K. Miyawaki, H. Yamashita, ACS Catal. 6, 3128–3135 (2016)CrossRefGoogle Scholar
  11. 11.
    G. Fan, Q. Liu, D. Tang, X. Li, J. Bi, D. Gao, Int. J. Hydrogen Energy 41, 1542–1549 (2016)CrossRefGoogle Scholar
  12. 12.
    S. Akbayrak, M. Kaya, M. Volkan, S. Özkar, Appl. Catal. B 147, 384–393 (2014)CrossRefGoogle Scholar
  13. 13.
    S. Karahan, M. Zahmakran, S. Ozkar, Chem. Commun. 48, 1180–1182 (2012)CrossRefGoogle Scholar
  14. 14.
    Y.W. Yang, G. Feng, Z.H. Lu, N. Hu, F. Zhang, X.S. Chen, Acta Phys-Chim. Sin. 30, 1180–1186 (2014)Google Scholar
  15. 15.
    L. Zhou, T. Zhang, Z. Tao, J. Chen, Nano Res. 7, 774–781 (2014)CrossRefGoogle Scholar
  16. 16.
    S.W. Lai, J.W. Park, S.H. Yoo, J.M. Ha, E.H. Song, S.O. Cho, Int. J. Hydrogen Energy 41, 3428–3435 (2016)CrossRefGoogle Scholar
  17. 17.
    Y. Liu, J. Zhang, H.J. Guan, Y.F. Zhao, J.H. Yang, B. Zng, Appl. Surf. Sci. 427, 106–113 (2018)CrossRefGoogle Scholar
  18. 18.
    W.L. Tan, N.H.H. Abu Bakar, M. Abu, Bakar, Catal. Lett. 145, 1626–1633 (2015)CrossRefGoogle Scholar
  19. 19.
    N.Z. Shang, C. Feng, S.T. Gao, C. Wang, Int. J. Hydrogen Energy 41, 944–950 (2016)CrossRefGoogle Scholar
  20. 20.
    S. Li, J. Gong, Chem. Soc. Rev. 43, 7245–7256 (2014)CrossRefGoogle Scholar
  21. 21.
    K. Tanabe, Mater. Chem. Phys. 13, 347–364 (1985)CrossRefGoogle Scholar
  22. 22.
    J.J. Luo, H.Y. Xu, Y.F. Liu, W. Chu, C.F. Jiang, X.S. Zhao, Appl. Catal. A 423–424, 121–129 (2012)CrossRefGoogle Scholar
  23. 23.
    N. Gokon, S. Takahashi, H. Yamamoto, T. Kodama, Int. J. Hydrogen Energy 33, 2189–2199 (2008)CrossRefGoogle Scholar
  24. 24.
    S. Esposito, M. Turco, G. Bagnasco, C. Cammarano, P. Pernice, A. Aronne, Appl. Catal. A 372, 48–57 (2010)CrossRefGoogle Scholar
  25. 25.
    P.H. Matter, D.J. Braden, U.S. Ozkan, J. Catal. 223, 340–351 (2004)CrossRefGoogle Scholar
  26. 26.
    M. Vrinat, D. Hamon, M. Breysse, B. Durand, T. Des Courrieres, Catal. Today 20, 273–282 (1994)CrossRefGoogle Scholar
  27. 27.
    Y. Jang, J. Chung, S. Kim, S.W. Jun, B.H. Kim, D.W. Lee, B.M. Kim, T. Hyeon, Phys. Chem. Chem. Phys. 13, 2512–2516 (2011)CrossRefGoogle Scholar
  28. 28.
    Y. Du, C.C. Wang, H. Jiang, C.L. Chen, R.Z. Chen, J. Ind. Eng. Chem. 35, 262–267 (2016)CrossRefGoogle Scholar
  29. 29.
    H.M. Wang, Z.F. Lu, D.Z. Lu, C.H. Li, P.F. Fang, X. Wang, Solid State Sci. 55, 69–76 (2016)CrossRefGoogle Scholar
  30. 30.
    R. Mohan, K. Krishnamoorthy, S.J. Kim, Solid State Commun. 152, 375–380 (2012)CrossRefGoogle Scholar
  31. 31.
    V. Grover, R. Shukla, A.K. Tyagi, Scr. Mater. 57, 699–702 (2007)CrossRefGoogle Scholar
  32. 32.
    F.B. Derekaya, Ç Güldür, Int. J. Hydrogen Energy 35, 2247–2261 (2010)CrossRefGoogle Scholar
  33. 33.
    H.H. Lu, H.B. Yin, Y.M. Liu, T.S. Jiang, L.B. Yu, Catal. Commun. 10, 313–316 (2008)CrossRefGoogle Scholar
  34. 34.
    J. Feng, Q. Wang, D.L. Fan, L.R. Ma, D.L. Jiang, J.M. Xie, J.J. Zhu, Appl. Surf. Sci. 382, 135–143 (2016)CrossRefGoogle Scholar
  35. 35.
    L. Castro, P. Reyes, C. Montes, de Correa, J. Sol-Gel Sci. Technol. 25, 159–168 (2002)CrossRefGoogle Scholar
  36. 36.
    Y. Wang, R.A. Caruso, J. Mater. Chem. 12, 1442–1445 (2002)CrossRefGoogle Scholar
  37. 37.
    J.G. Yang, F.Y. Cheng, J. Liang, J. Chen, Int. J. Hydrogen Energy 36, 1411–1417 (2011)CrossRefGoogle Scholar
  38. 38.
    S. Basu, A. Brockman, P. Gagare, Y. Zheng, P.V. Ramachandran, W.N. Delgass, J.P. Gore, J. Power Sources 188, 238–243 (2009)CrossRefGoogle Scholar
  39. 39.
    A.T. Ravichandran, K. Catherine Siriya Pushpa, K. Ravichandran, K. Karthika, B.M. Nagabhushana, S. Mantha, K. Swaminathan, Superlattice Microst. 75, 533–542 (2014)CrossRefGoogle Scholar
  40. 40.
    M.A. Bhosale, T. Sasaki, B.M. Bhanage, Catal. Sci. Technol. 4, 4274–4280 (2014)CrossRefGoogle Scholar
  41. 41.
    I. Kasatkin, F. Girgsdies, T. Ressler, R.A. Caruso, J.H. Schattka, J. Urban, K. Weiss, J. Mater. Sci. 39, 2151–2157 (2004)CrossRefGoogle Scholar
  42. 42.
    D. Zhao, X. Xiong, C.L. Qu, N. Zhang, J. Phys. Chem. C 118, 19007–19016 (2014)CrossRefGoogle Scholar
  43. 43.
    J. Morales, A. Caballero, J.P. Holgado, J.P. Espino´s, A.R. Gonza´lez-Elipe, J. Phys. Chem. B 106, 10185–10190 (2002)CrossRefGoogle Scholar
  44. 44.
    L.C. Wang, Q. Liu, M. Chen, Y.M. Liu, Y. Cao, H.Y. He, K.N. Fan, J. Phys. Chem. C 111, 16549–16557 (2007)CrossRefGoogle Scholar
  45. 45.
    Q. Han, Z.H. Liu, Y.Y. Xu, Z.Y. Chen, T.M. Wang, H. Zhang, J. Phys. Chem. C 111, 5034–5038 (2007)CrossRefGoogle Scholar
  46. 46.
    J. Słoczyn´ski, R. Grabowski, A. Kozłowska, P.K. Olszewski, J. Stoch, Phys. Chem. Chem. Phys. 5, 4631–4640 (2003)CrossRefGoogle Scholar
  47. 47.
    L.X. Wang, W.C. Zhu, D.F. Zheng, X. Yu, J. Cui, M.J. Jia, W.X. Zhang, Z.L. Wang, Reac. Kinet. Mech. Cat. 101, 365–375 (2010)CrossRefGoogle Scholar
  48. 48.
    J.B. Ko, C.M. Bae, Y.S. Jung, D.H. Kim, Catal. Lett. 105, 157–161 (2005)CrossRefGoogle Scholar
  49. 49.
    K.S.W. Sing, D.H. Everett, R.A.W. Haul, L. Moscou, R.A. Pierotti, J. Rouquerol, T. Siemieniewska, Pure Appl. Chem. 57, 603–619 (1985)CrossRefGoogle Scholar
  50. 50.
    G. Fetter, P. Bosch, T. Lo´pez, J. Sol-Gel Sci. Technol. 23, 199–203 (2002)CrossRefGoogle Scholar
  51. 51.
    S. Kumar, S. Bhunia, A.K. Ojha, Physica E 66, 74–80 (2015)CrossRefGoogle Scholar
  52. 52.
    E. Nouril, M. Shahmiri, H.R. Rezaie, F. Talayian, Int. J. Ind. Chem. 3, 17 (2012)CrossRefGoogle Scholar
  53. 53.
    A. Taavoni-Gilan, E. Taheri-Nassaj, H. Akhondi, J. Non-Cryst. Solids 355, 311–316 (2009)CrossRefGoogle Scholar
  54. 54.
    M. Chandra, Q. Xu, J. Power Sources 168, 135–142 (2007)CrossRefGoogle Scholar
  55. 55.
    J. Du, F.Y. Cheng, M. Si, J. Liang, Z.L. Tao, J. Chen, Int. J. Hydrogen Energy 38, 5768–5774 (2013)CrossRefGoogle Scholar
  56. 56.
    H. Zhang, X.F. Wang, C.C. Chen, C.H. An, Y.A. Xu, Y.N. Huang, Q.Y. Zhang, Y.J. Wang, L.F. Jiao, H.T. Yuan, Int. J. Hydrogen Energy 40, 12253–12261 (2015)CrossRefGoogle Scholar
  57. 57.
    F.Y. Qiu, Y.L. Dai, L. Li, C.C. Xu, Y.N. Huang, C.C. Chen, Y.J. Wang, L.F. Jiao, H.T. Yuan, Int. J. Hydrogen Energy 39, 436–441 (2014)CrossRefGoogle Scholar
  58. 58.
    M. Rakap, Appl. Catal. A 478, 15–20 (2014)CrossRefGoogle Scholar
  59. 59.
    X. Yang, F. Cheng, J. Liang, Z. Tao, J. Chen, Int. J. Hydrogen Energy 34, 8785–8791 (2009)CrossRefGoogle Scholar
  60. 60.
    S. Basu, A. Brockman, P. Gagore, Y. Zheng, P.V. Ramachandran, W.N. Delgass, J. Power Sources 188, 238–243 (2009)CrossRefGoogle Scholar
  61. 61.
    Z.H. Lu, J.P. Li, A.L. Zhu, Q.L. Yao, W. Huang, R.Y. Zhou, R.F. Zhou, X.S. Chen, Int. J. Hydrogen Energy 38, 5330–5337 (2013)CrossRefGoogle Scholar
  62. 62.
    M. Rakap, E.E. Kalu, S. Özkarb, Int. J. Hydrogen Energy 36, 1448–1455 (2011)CrossRefGoogle Scholar
  63. 63.
    C.F. Yao, L. Zhuang, Y.L. Cao, X.P. Ai, H.X. Yang, Int. J. Hydrogen Energy 33, 2462–2467 (2008)CrossRefGoogle Scholar
  64. 64.
    L. Yang, J. Su, X. Meng, W. Luo, G. Cheng, J. Mater. Chem. A 1, 10016–10023 (2013)CrossRefGoogle Scholar
  65. 65.
    H. Yen, F. Kleitz, J. Mater. Chem. A 1, 14790–14796 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Chemistry and Chemical EngineeringJiangsu UniversityZhenjiangPeople’s Republic of China
  2. 2.Jiangsu Provincial Xuzhou Pharmaceutical Vocational CollegeXuzhouPeople’s Republic of China

Personalised recommendations