Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 17, pp 14945–14959 | Cite as

Photocatalytic properties of plasma-synthesized zinc oxide and tin-doped zinc oxide (TZO) nanopowders and their applications as transparent conducting films

  • Arun Murali
  • Hong Yong Sohn
Article
  • 190 Downloads

Abstract

Transparent conducting zinc oxide and tin-doped zinc oxide (TZO) nanopowders were synthesized for the first time using a novel plasma-assisted chemical vapor synthesis route. The injected precursors were volatized completely and rapidly followed by chemical reactions and subsequent quenching to yield fine nanopowder. The amount of tin nitrate was varied to obtain 3 and 5 at.% Sn designated as TZO1 and TZO2 respectively. XRD diffraction peaks of TZO1 nanoparticles indicated the presence of wurtzite structure without any tin oxide peaks except in TZO2 sample and SEM micrographs revealed spherical particles. The nanosized powders would make an excellent material for use as photocatalyst due to high surface to volume ratio. Optical examinations indicated that the band gap in TZO1 was redshifted to 3.16 eV from 3.22 eV in undoped ZnO nanoparticles. The photocatalytic properties of ZnO and TZO nanopowders were investigated using the methylene blue dye degradation under UV light irradiation and kinetic analyses indicated that the photodegradation of methylene blue followed pseudo-first order kinetic model using Langmuir–Hinshelwood mechanism. Furthermore, the TZO1 nanoparticles exhibited superior photocatalytic activity compared with ZnO and the improvement was ascribed to increase in specific surface area and enhanced oxygen vacancies as revealed from the XPS O 1s and PL spectra. Deposited films showed a hexagonal wurtzite structure and exhibited a c-axis preferred orientation perpendicular to the substrate. A minimum resistivity of 1.4 × 10− 3 Ωcm was obtained at lower doping amount of 3 at.% Sn as in TZO1 film and all the films exhibited an average transmission of 80% indicating their suitability as a promising material in optoelectronic applications. Optical constants of the films were determined, which varied with doping amount. The photo-current properties of ZnO and TZO films were investigated and only TZO1 film showed photo response property when irradiated with UV lamp.

Notes

Funding

Funding was provided by NSF/U.S.-Egypt Joint Science and Technology Board, Grant No. (IIA-1445577).

References

  1. 1.
    D.S.Y. Jayathilake, T.A.N. Peiris, J.S. Sagu, D.B. Potter, K.G.U. Wijayantha, C.J. Carmalt, D.J. Southee, ACS Sustain. Chem. Eng. 5, 4820 (2017)CrossRefGoogle Scholar
  2. 2.
    T. Shiosaki, M. Adachi, A. Kawabata, Thin Solid Films 96, 129 (1982)CrossRefGoogle Scholar
  3. 3.
    C.-T. Chen, F.-C. Hsu, Y.-M. Sung, H.-C. Liao, W.-C. Yen, W.-F. Su, Y.-F. Chen, Sol. Energy Mater. Sol. Cells 107, 69 (2012)CrossRefGoogle Scholar
  4. 4.
    S. Xue, X. Zu, W. Zheng, M. Chen, X. Xiang, Phys. B 382, 201 (2006)CrossRefGoogle Scholar
  5. 5.
    C. Benouis, M. Benhaliliba, A.S. Juarez, M. Aida, F. Chami, F. Yakuphanoglu, J. Alloys Compd. 490, 62 (2010)CrossRefGoogle Scholar
  6. 6.
    T.T. Werner, G.M. Mudd, S.M. Jowitt, Appl. Earth Sci. 124, 213 (2015)CrossRefGoogle Scholar
  7. 7.
    R. Deng, X. Zhang, J. Lumin. 128, 1442 (2008)CrossRefGoogle Scholar
  8. 8.
    M. Tsega, D.-H. Kuo, Solid State Commun. 164, 42 (2013)CrossRefGoogle Scholar
  9. 9.
    J.-H. Lee, B.-O. Park, Thin Solid Films 426, 94 (2003)CrossRefGoogle Scholar
  10. 10.
    Z. Heinrich, Color Chemistry: Synthesis, Properties and Applications of Organic Dyes and Pigments (Wiley-VCH, Weinheim, 2003)Google Scholar
  11. 11.
    A.G. Prado, J.D. Torres, E.A. Faria, S.Ä.Ì.C. Dias, J. Colloid Interface Sci. 277, 43 (2004)CrossRefGoogle Scholar
  12. 12.
    S. Senthilvelan, V. Chandraboss, B. Karthikeyan, L. Natanapatham, M. Murugavelu, Mater. Sci. Semicond. Process. 16, 185 (2013)CrossRefGoogle Scholar
  13. 13.
    M. Huang, C. Xu, Z. Wu, Y. Huang, J. Lin, J. Wu, Dyes Pigm. 77, 327 (2008)CrossRefGoogle Scholar
  14. 14.
    J. Jing, J. Li, J. Feng, W. Li, W.W. Yu, Chem. Eng. J. 219, 355 (2013)CrossRefGoogle Scholar
  15. 15.
    K.M. Reza, A. Kurny, F. Gulshan, Appl. Water Sci. 7, 1569 (2015)CrossRefGoogle Scholar
  16. 16.
    A. Gnanaprakasam, V.M. Sivakumar, M. Thirumarimurugan, Indian J. Mater. Sci. 2015, 1 (2015)CrossRefGoogle Scholar
  17. 17.
    H.Y. Sohn, Chemical Vapor Synthesis of Inorganic Nanopowders (Nova Science Publishers, New York, 2012)Google Scholar
  18. 18.
    A. Murali, H.Y. Sohn, Mater. Res. Express 5, 065045 (2018)CrossRefGoogle Scholar
  19. 19.
    C.U. Bang, D.H. Shin, Y.C. Hong, H.S. Uhm, IEEE Conference Record—Abstracts. 2005 IEEE International Conference on Plasma Science (2005)Google Scholar
  20. 20.
    G. Buhler, D. Tholmann, C. Feldmann, Adv. Mater. 19, 2224 (2007)CrossRefGoogle Scholar
  21. 21.
    J. Ederth, P. Heszler, A. Hultaker, G. Niklasson, C. Granqvist, Thin Solid Films 445, 199 (2003)CrossRefGoogle Scholar
  22. 22.
    C. Wu, L. Shen, H. Yu, Q. Huang, Y.C. Zhang, Mater. Res. Bull. 46, 1107 (2011)CrossRefGoogle Scholar
  23. 23.
    L.-P. Wang, F. Zhang, S. Chen, Z.-H. Bai, Int. J. Mine. Metall. Mater. 24, 455 (2017)CrossRefGoogle Scholar
  24. 24.
    M.A. Javid, M. Rafi, I. Ali, F. Hussain, M. Imran, A. Nasir, Mater. Sci. 34, 741–746 (2016)Google Scholar
  25. 25.
    P. Junlabhut, W. Mekprasart, R. Noonuruk, K. Chongsri, W. Pecharapa, Energy Procedia 56, 560 (2014)CrossRefGoogle Scholar
  26. 26.
    M. Verma, P.K. Dwivedi, B. Das, J. Exp. Nanosci. 10, 438 (2013)CrossRefGoogle Scholar
  27. 27.
    S.Y. Li, P. Lin, C.Y. Lee, T.Y. Tseng, C.J. Huang, J. Phys. D 37, 2274 (2004)CrossRefGoogle Scholar
  28. 28.
    V. Shelke, B.K. Sonawane, M.P. Bhole, D.S. Patil, J. Mater. Sci.: Mater. Electron. 23, 451 (2011)Google Scholar
  29. 29.
    F. Bedia, A. Bedia, M. Aillerie, N. Maloufi, B. Benyoucef, Energy Procedia 74, 539 (2015)CrossRefGoogle Scholar
  30. 30.
    M. Nasir, M. Hannas, M.H. Mamat, M. Rusop, Adv. Mater. Res. 1109, 577 (2015)CrossRefGoogle Scholar
  31. 31.
    T. Ryu, Y.J. Choi, S. Hwang, H.Y. Sohn, I. Kim, J. Am. Ceram. Soc. 93, 3130 (2010)CrossRefGoogle Scholar
  32. 32.
    B. Liu, X. Zhao, C. Terashima, A. Fujishima, K. Nakata, Phys. Chem. Chem. Phys. 16, 8751 (2014)CrossRefGoogle Scholar
  33. 33.
    . D. Cullity, Elements of X-Ray Diffraction (Addison-Wesley Publishing Company, Reading, 1967)Google Scholar
  34. 34.
    O. Lupan, S. Shishiyanu, V. Ursaki, H. Khallaf, L. Chow, T. Shishiyanu, V. Sontea, E. Monaico, S. Railean, Sol. Energy Mater. Sol. Cells 93, 1417 (2009)CrossRefGoogle Scholar
  35. 35.
    A. Drici, G. Djeteli, G. Tchangbedji, H. Derouiche, K. Jondo, K. Napo, J.C. Bernede, S. Ouro-Djobo, M. Gbagba, Phys. Status Solidi A 201, 1528 (2004)CrossRefGoogle Scholar
  36. 36.
    T.C. Damen, S.P.S. Porto, B. Tell, Phys. Rev. 142, 570 (1966)CrossRefGoogle Scholar
  37. 37.
    J. Alaria, M. Bouloudenine, G. Schmerber, S. Colis, A. Dinia, P. Turek, M. Bernard, J. Appl. Phys. 99, 08M118 (2006)CrossRefGoogle Scholar
  38. 38.
    S. Hamrit, K. Djessas, N. Brihi, B. Viallet, K. Medjnoun, S. Grillo, Ceram. Int. 42, 16212 (2016)CrossRefGoogle Scholar
  39. 39.
    P. Sangeetha, V. Sasirekha, V. Ramakrishnan, J. Raman Spectrosc. 42, 1634 (2011)CrossRefGoogle Scholar
  40. 40.
    H. Liu, X. Zeng, X. Kong, S. Bian, J. Chen, Appl. Surf. Sci. 258, 8564 (2012)CrossRefGoogle Scholar
  41. 41.
    D. Choi, Y.S. Kim, Y. Son, RSC Adv. 4, 50975 (2014)CrossRefGoogle Scholar
  42. 42.
    K.J. Chen, F.Y. Hung, Y.T. Chen, S.J. Chang, Z.S. Hu, Mater. Trans. 51, 1340 (2010)CrossRefGoogle Scholar
  43. 43.
    A. Bougrine, A.E. Hichou, M. Addou, J. Ebothe, A. Kachouane, M. Troyon, Mater. Chem. Phys. 80, 438 (2003)CrossRefGoogle Scholar
  44. 44.
    M. Gao, X. Wu, J. Liu, W. Liu, Appl.Surf. Sci. 257, 6919 (2011)CrossRefGoogle Scholar
  45. 45.
    B.-Y. Oh, M.-C. Jeong, J.-M. Myoung, App. Surf. Sci. 253, 7157 (2007)CrossRefGoogle Scholar
  46. 46.
    X.-J. Yang, X.-Y. Miao, X.-L. Xu, C.-M. Xu, J. Xu, H.-T. Liu, Opt. Mater. 27, 1602 (2005)CrossRefGoogle Scholar
  47. 47.
    C.-A. Tseng, J.-C. Lin, W.-H. Weng, C.-C. Lin, Jpn. J. Appl. Phys. 52, 025801 (2013)CrossRefGoogle Scholar
  48. 48.
    P.-T. Hsieh, Y.-C. Chen, K.-S. Kao, C.-M. Wang, Appl, Phys. A 90, 317 (2007)CrossRefGoogle Scholar
  49. 49.
    P. Zu, Z.K. Tang, G.K. Wong, M. Kawasaki, A. Ohtomo, H. Koinuma, Y. Segawa, Solid State Commun. 103, 459 (1997)CrossRefGoogle Scholar
  50. 50.
    S.-S. Lo, D. Huang, C.H. Tu, C.-H. Hou, C.-C. Chen, J. Phys. D 42, 095420 (2009)CrossRefGoogle Scholar
  51. 51.
    Y.J. Jang, C. Simer, T. Ohm, Mater. Res. Bull. 41, 67 (2006)CrossRefGoogle Scholar
  52. 52.
    T.N. Ravishankar, K. Manjunatha, T. Ramakrishnappa, G. Nagaraju, D. Kumar, S. Sarakar, B. Anandakumar, G. Chandrappa, V. Reddy, J. Dupont, Mater. Sci. Semicond. Process. 26, 7 (2014)CrossRefGoogle Scholar
  53. 53.
    B.M. Rajbongshi, A. Ramchiary, S.K. Samdarshi, Mater. Lett. 134, 11 (2014)CrossRefGoogle Scholar
  54. 54.
    M. Khairy, W. Zakaria, Egypt. J. Pet. 23, 419 (2014)CrossRefGoogle Scholar
  55. 55.
    S.A. Ansari, M.M. Khan, J. Lee, M.H. Cho, J. Ind. Eng. Chem. 20, 1602 (2014)CrossRefGoogle Scholar
  56. 56.
    C. Wang, D. Wu, P. Wang, Y. Ao, J. Hou, J. Qian, App. Surf. Sci. 325, 112 (2015)CrossRefGoogle Scholar
  57. 57.
    B. Choudhury, P. Chetri, A. Choudhury, RSC Adv. 4, 4663 (2014)CrossRefGoogle Scholar
  58. 58.
    A. Younis, D. Chu, Y.V. Kaneti, S. Li, Nanoscale 8, 378 (2016)CrossRefGoogle Scholar
  59. 59.
    J. Shao, Y.Q. Shen, J. Sun, N. Xu, D. Yu, Y.F. Lu, J.D. Wu, J. Vac. Sci. Technol. B 26, 214 (2008)CrossRefGoogle Scholar
  60. 60.
    W. Yang, Z. Liu, D.-L. Peng, F. Zhang, H. Huang, Y. Xie, Z. Wu, Appl. Surf. Sci. 255, 5669 (2009)CrossRefGoogle Scholar
  61. 61.
    A. Sreedhar, J.H. Kwon, J. Yi, J.S. Gwag, Mater. Res. Bull. 95, 451 (2017)CrossRefGoogle Scholar
  62. 62.
    C.-Y. Tsay, H.-C. Cheng, Y.-T. Tung, W.-H. Tuan, C.-K. Lin, Thin Solid Films 517, 1032 (2008)CrossRefGoogle Scholar
  63. 63.
    F. Abeles, Optical Properties of Solids (North-Holland, Amsterdam, 1972)Google Scholar
  64. 64.
    M. Caglar, S. Ilican, Y. Caglar, F. Yakuphanoglu, J. Mater. Sci.: Mater. Electron. 19, 704 (2007)Google Scholar
  65. 65.
    M.H. Mamat, M.Z. Sahdan, Z. Khusaimi, A.Z. Ahmed, S. Abdullah, M. Rusop, Opt. Mater. 32, 696 (2010)CrossRefGoogle Scholar
  66. 66.
    G. Haacke, J. Appl. Phys. 47, 4086 (1976)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Metallurgical EngineeringUniversity of UtahSalt Lake CityUSA

Personalised recommendations