Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 17, pp 14935–14944 | Cite as

Impact of oxygen vacancies on optical, electrical and antibacterial studies of Mn/Sn codoped ZnO nanoparticles

  • V. Vadhana Sharon
  • S. Muthukumaran
Article
  • 28 Downloads

Abstract

Andrographis paniculata leaf extract mediated synthesis of (Mn, Sn) doped Zinc Oxide nanoparticles with the concentration of Sn (0–4%) have been prepared for the first time. These innovative nanoparticles are characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray (EDAX), UV–visible spectrometer, Fourier transform infrared (FTIR), photoluminescence (PL), electrical and antibacterial studies. XRD pattern confirmed that all samples have hexagonal wurtzite structure with the crystalline size below 25 nm. The elemental composition of Sn/Mn existence in the ZnO lattice was verified using EDAX. The morphological changes due to the increase in dopant concentration were sighted by SEM images. The changes in PL, electrical and antibacterial studies proves the creation of more oxygen vacancies in Sn = 4% sample giving rise to enhanced optical, dielectric, conductivity behavior besides being noxious to Staphylococcus aureus (ZOI: 12.5) and Pseudomonas aeruginosa (ZOI: 13).

References

  1. 1.
    S. Wacharawichanant, N. Thongbunyoung, P. Churdchoo, T. Sookjai, Sci. J. UBU 1, 21–26 (2010)Google Scholar
  2. 2.
    K. Karthik, S. Dhanuskodi, C. Gobinath, S. Sivaramakrishnan, Spectrochim. Acta A 139, 7–12 (2015)CrossRefGoogle Scholar
  3. 3.
    K. Karthik, S. Dhanuskodi, C. Gobinath, S. Prabukumar, S. Sivaramakrishnan, Mater. Res. Innov. (2018)  https://doi.org/10.1080/14328917.2018.1475443 Google Scholar
  4. 4.
    T.R. Tatarchuk, N.D. Paliychuk, M. Bououdina, B. Al-Najar, M. Pacia, W. Macyk, A. Shyichuk, J. Alloys Compd. 731, 1256–1266 (2018)CrossRefGoogle Scholar
  5. 5.
    B.R. Babu, T. Tatarchuk, Mater. Chem. Phys. 207, 534–541 (2018)CrossRefGoogle Scholar
  6. 6.
    J. Emima Jeronisa, L. Allwin Joseph, S. Jerome, Das, Int. J. Dev. Res. 5, 5707–5711 (2015)Google Scholar
  7. 7.
    P. Bilecka, M. Elser, Niederberger, ACS Nano 3, 467–477 (2009)CrossRefGoogle Scholar
  8. 8.
    S. Dhara, P. Giri, Nanoscale Res. Lett. 6, 504 (2011)CrossRefGoogle Scholar
  9. 9.
    Y.-M. Hao, S.-Y. Lou, S.-M. Zhou, R.-J. Yuan, G.-Y. Zhu, N. Li, Nanoscale Res. Lett. 7, 100 (2012)CrossRefGoogle Scholar
  10. 10.
    T.L. Tan, C.W. Lai, S.B.A. Hamid, J. Nanopart. 2014, 6 (2014)Google Scholar
  11. 11.
    T. Rakshit, I. Manna, S.K. Ray, AIP Adv. 3, 112112 (2013)CrossRefGoogle Scholar
  12. 12.
    S.P. Rajendran, K. Sengodan, J. Nanosci. 7, 2017 (2017)Google Scholar
  13. 13.
    K. Karthik, S. Dhanuskodi, S. Prabukumar, C. Gobinath, S. Sivaramakrishnan, Mater. Lett. 206, 217–220 (2017)CrossRefGoogle Scholar
  14. 14.
    M. Ashokkumar, S. Muthukumaran, Powder Tech. 258, 157 (2014)CrossRefGoogle Scholar
  15. 15.
    B.D. Cullity, Elements of X-ray Diffractions (Addison-Wesley, Reading, 1978)Google Scholar
  16. 16.
    G. Srinivasan, R.T.R. Kumar, J. Kumar, J. Sol-Gel. Sci. Technol. 43, 171 (2007)CrossRefGoogle Scholar
  17. 17.
    O. Lupan, T. Pauporte, L. Chow, B. Viana, F. Pelle, L.K. Ono, B.R. Cuenya, H. Heinrich, Appl. Surf. Sci. 256, 1895 (2010)CrossRefGoogle Scholar
  18. 18.
    A. Kalita, M.P.C. Kalita, Appl. Phys. A 121, 521–524 (2015)CrossRefGoogle Scholar
  19. 19.
    M. Ashokkumar, S. Muthukumaran, J. Lumin. 162, 97–103 (2015)CrossRefGoogle Scholar
  20. 20.
    D. Anbuselvan, S. Muthukumaran, Opt. Mater. 42, 124 (2015)CrossRefGoogle Scholar
  21. 21.
    S.P. Rajendran, K. Sengodan, J. Nanosci. 2017, 1–7 (2017)CrossRefGoogle Scholar
  22. 22.
    A. Dhanalakshmi, B. Natarajan, V. Ramadas, A. Palanimurugan, S. Thanikaikarasan, J. Phys. 84, 4 (2016).  https://doi.org/10.1007/s12043-016-1248-0 Google Scholar
  23. 23.
    K. Karthik, S. Dhanuskodi, C. Gobinath, S. Prabukumar, S. Sivaramakrishnan, J. Phys. Chem. Solids 112, 106–118 (2018)CrossRefGoogle Scholar
  24. 24.
    A.Y. Oral, Z.B. Bahsi, M.H. Aslan, Appl. Surf. Sci. 253, 4593 (2007)CrossRefGoogle Scholar
  25. 25.
    N.S. Norberg, K.R. Kittilstved, J.E. Amonette, R.K. Kukkadapu, D.A. Schwartz, D.R. Gamelin, J. Am. Chem. Soc. 126, 9387 (2004)CrossRefGoogle Scholar
  26. 26.
    A.R. Xavier, A.T. Ravichandran, K. Ravichandran, S. Mantha, D. Ravinder, J. Mater. Sci.: Mater. Electron. 27, 11182 (2016)Google Scholar
  27. 27.
    T.M.K. Thandavan, C.S. Wong, S.M.A. Gani, R.M. Nor, Mater. Express 4, 6 (2014)CrossRefGoogle Scholar
  28. 28.
    K.N. Rathod, Z. Joshi, D. Dhruv, K. Gadani, H. Boricha, A.D. Joshi, P.S. Solanki, N.A. Shah, Mater. Res. Express 5, 3 (2018)CrossRefGoogle Scholar
  29. 29.
    M.M. El-Desoky, M.A. Ali, G. Afifi, H. Imam, M.S. Al-Assiri, Silicon 10, 301–307 (2018)CrossRefGoogle Scholar
  30. 30.
    R. Khan, Zulfiqar, C.I.L. de Araujo, T. Khan, Muneeb-Ur-Rahman, Zia-Ur-Rehman, A. Khan, B. Ullah, S. Fashu, J. Mater. Sci.: Mater. Electron. (2018).  https://doi.org/10.1007/s10854-018-9018-z Google Scholar
  31. 31.
    A. Sirelkhatim, S. Mahmud, A. Seeni, Nano-Micro Lett. 7, 219–242 (2015)CrossRefGoogle Scholar
  32. 32.
    K. Karthik, S. Dhanuskodi, C. Gobinath, S. Prabukumar, S. Sivaramakrishnan, J. Mater. Sci.: Mater. Electron. 28, 7991–8001 (2017)Google Scholar
  33. 33.
    M. Shaban, F. Mohamed, S.S. Abdallah, Sci. Rep. 8, 3925 (2018)CrossRefGoogle Scholar
  34. 34.
    K. Karthik, S. Dhanuskodi, C. Gobinath, S. Prabukumar, S. Sivaramakrishnan, J. Mater. Sci.: Mater. Electron. 28, 11420–11429 (2017)Google Scholar
  35. 35.
    S.-W. Zhao, C.-R. Guo, Y.-Z. Hu, Y.-R. Guo, Q.-J. Pan, Open Chem. 16, 9–20 (2018)CrossRefGoogle Scholar
  36. 36.
    N. Nithya, G. Bhoopathi, G. Magesh, C.D.N. Kumar, Mater. Sci. Semicond. Process. 83, 70–82 (2018)CrossRefGoogle Scholar
  37. 37.
    K. Karthik, S. Dhanuskodi, S. Prabukumar, C. Gobinath, S. Sivaramakrishnan, J. Mater. Sci.: Mater. Electron. 28, 16509–16518 (2017)Google Scholar
  38. 38.
    K. Karthik, S. Dhanuskodi, S. Prabukumar, C. Gobinath, S. Sivaramakrishnan, J. Mater. Sci.: Mater. Electron. 29, 5459–5471 (2018)Google Scholar
  39. 39.
    M. Thukkaram, S. Sitaram, S.K. Kannaiyan, G. Subbiahdoss, Int. J. Biomater. 2014, 6 (2014)CrossRefGoogle Scholar
  40. 40.
    Y.J. Jeba, J. Ratney, S.B. David, Green Chem. Technol. Lett. 2, 11–11 (2016)Google Scholar
  41. 41.
    A. Azam, A.S. Ahmed, M. Oves, M.S. Khan, A. Memic, Int. J. Nanomed. 7, 3527–3535 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.PG and Research Department of PhysicsGovernment Arts CollegeMelurIndia

Personalised recommendations