Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 17, pp 14927–14934 | Cite as

A highly electro-conductive and flexible fabric functionalized with bovine serum albumin for a wearable electronic device

  • Can Wang
  • Ronghui Guo
  • Shaojian Lin
  • Jianwu Lan
  • Shouxiang Jiang
  • Cheng Xiang


In this work, functional textile was fabricated through silver/reduced graphene oxide composites coated on polyester fabric after bovine serum albumin functionalization. The fabric not only possesses low electrical resistance of 1.6 Ω, but also exhibits excellent EMI shielding effectiveness of 54.4 dB. In addition, the fabric funcionalized with bovine serum albumin remains good performances after heating, bending and washing tests. Furthermore, the fabric keeps the pliability, good handle and lightweight of the fabric, indicating that the silver/reduced graphene oxide coated fabric could be considered as a wearable electronic device with highly efficient EMI shielding performance.



This work was financially supported by The Fundamental Research Funds for the Central Universities (No. 2012017yjsy178) and The National Natural Science Foundation of China (No. 51203099).


  1. 1.
    J.W. Jeon, S.Y. Cho, Y.J. Jeong, D.S. Shin, N.R. Kim, Y.S. Yun, H.T. Kim, S.B. Choi, W.G. Hong, H.J. Kim, H.J. Jin, B.H. Kim, Pyroprotein-based electronic textiles with high stability. Adv. Mater. 29, 1605479 (2017)CrossRefGoogle Scholar
  2. 2.
    H. Jin, N. Matsuhisa, S. Lee, M. Abbas, T. Yokota, T. Someya, Enhancing the performance of stretchable conductors for e-textiles by controlled ink permeation. Adv. Mater. 29, 1605848 (2017)CrossRefGoogle Scholar
  3. 3.
    H.M. Kim, H.W. Kang, D.K. Hwang, H.S. Lim, B.K. Ju, J.A. Lim, Metal-insulator-semiconductor coaxial microfibers based on self-organization of organic semiconductor:polymer blend for weavable, fibriform organic field-effect transistors. Adv. Funct. Mater. 26, 2706–2714 (2016)CrossRefGoogle Scholar
  4. 4.
    K. Novoselov, V. Falko, L. Colombo, P. Gellert, M. Schwab, K. Kim, A roadmap for graphene. Nature 490, 192–200 (2012)CrossRefGoogle Scholar
  5. 5.
    C. Lee, X. Wei, J.W. Kysar, J. Hong, Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385–388 (2008)CrossRefGoogle Scholar
  6. 6.
    F. Bonaccorso, Z. Sun, T. Hasan, A.C. Ferrari, Graphene photonics and optoelectronics. Nat. Photonics 4, 611–622 (2010)CrossRefGoogle Scholar
  7. 7.
    A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009)CrossRefGoogle Scholar
  8. 8.
    H.B. Heersche, P. Jarillo-Herrero, J.B. Oostinga, L.M.K. Vandersypen, A.F. Morpurgo, Bipolar supercurrent in graphene. Nature 446, 56–59 (2007)CrossRefGoogle Scholar
  9. 9.
    A.N. Grigorenko, M. Polini, K.S. Novoselov, Graphene plasmonics. Nat. Photonics 6, 749–758 (2012)CrossRefGoogle Scholar
  10. 10.
    Y.J. Yun, W.G. Hong, W.J. Kim, Y. Jun, B.H. Kim, A novel method for applying reduced graphene oxide directly to electronic textiles from yarns to fabrics. Adv. Mater. 25, 5701–5705 (2013)CrossRefGoogle Scholar
  11. 11.
    J.S. Ren, C.X. Wang, X. Zhang, T. Carey, K.L. Chen, Y.J. Yin, F. Torrisi, Environmentally-friendly conductive cotton fabric as flexible strain sensor based on hot press reduced graphene oxide. Carbon 111, 622–630 (2017)CrossRefGoogle Scholar
  12. 12.
    A. Berendjchi, R. Khajavi, A.A. Yousefi, M.E. Yazdanshenas, Improved continuity of reduced graphene oxide on polyester fabric by use of polypyrrole to achieve a highly electro-conductive and flexible substrate. Appl. Surf. Sci. 363, 264–272 (2016)CrossRefGoogle Scholar
  13. 13.
    S.F. Zhao, L.Z. Guo, J.H. Li, N. Li, G.P. Zhang, Y.J. Gao, J. Li, D.X. Cao, W. Wang, Y.F. Jin, R. Sun, C.P. Wong, Binary synergistic sensitivity strengthening of bioinspired hierarchical architectures based on fragmentized reduced graphene oxide sponge and silver nanoparticles for strain sensors and beyond. Small 13, 1700944 (2017)CrossRefGoogle Scholar
  14. 14.
    S.T. Hsiao, H.W. Tien, W.H. Liao, Y.S. Wang, S.M. Li, C.C. MMa, Y.H. Yu, W.P. Chuang, A highly electrically conductive graphene-silver nanowire hybrid nanomaterial for transparent conductive films. J. Mater. Chem. C 2, 7284–7291 (2014)CrossRefGoogle Scholar
  15. 15.
    R. Ma, V.V. Tsukruk, Seriography-guided reduction of graphene oxide biopapers for wearable sensory electronics. Adv. Funct. Mater. 27, 1604802 (2017)CrossRefGoogle Scholar
  16. 16.
    C. Wang, R.H. Guo, J.W. Lan, S.X. Jiang, Z.Y. Zhang, Microwave-assisted synthesis of silver/reduced graphene oxide on cotton fabric. Cellulose 24, 4045–4055 (2017)CrossRefGoogle Scholar
  17. 17.
    C. Wang, C. Xiang, L. Tan, J.W. Lan, L.H. Peng, S.X. Jiang, R.H. Guo, Preparation of silver/reduced graphene oxide coated polyester fabric for electromagnetic interference shielding. RSC Adv. 7, 40452–40461 (2017)CrossRefGoogle Scholar
  18. 18.
    M.K. Shin, B. Lee, S.H. Kim, J.A. Lee, G.M. Spinks, S. Gambhir, G.G. Wallace, M.E. Kozlov, R.H. Baughman, S.J. Kim, Synergistic toughening of composite fibres by self-alignment of reduced graphene oxide and carbon nanotubes. Nat. Commun. 3, 650 (2012)CrossRefGoogle Scholar
  19. 19.
    X. Li, P. Sun, L. Fan, M. Zhu, K. Wang, M. Zhong, J. Wei, D. Wu, Y. Cheng, H. Zhu, Multifunctional graphene woven fabrics. Sci. Rep. 2, 395 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Can Wang
    • 1
  • Ronghui Guo
    • 1
  • Shaojian Lin
    • 1
  • Jianwu Lan
    • 1
  • Shouxiang Jiang
    • 2
  • Cheng Xiang
    • 1
  1. 1.College of Light Industry, Textile and Food EngineeringSichuan UniversityChengduChina
  2. 2.Institute of Textiles and ClothingThe Hong Kong Polytechnic UniversityHong KongChina

Personalised recommendations