Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 17, pp 14918–14926 | Cite as

Synthesis of graphene/ZnO nanoflowers and electrochemical determination of levodopa in the presence of uric acid

  • Hong Yan YueEmail author
  • Bao Wang
  • Shuo Huang
  • Xin Gao
  • Shan Shan Song
  • En Hao Guan
  • Hong Jie Zhang
  • Peng Fei Wu
  • Xin Rui Guo


ZnO nanoflowers (ZnONFs) were synthesized by a simple hydrothermal method. Then, ZnONFs suspension was sprayed onto the indium tin oxide coated glass. Finally, graphene was deposited on the surface of ZnONFs (graphene/ZnONFs) by chemical vapor deposition, which is used to electrochemically determine levodopa in the presence of uric acid. The results show that the length and diameter of ZnONFs are ∼ 2.5 µm and 50 nm, respectively. Graphene with multi-layers and some defects are deposited on the surface of ZnONFs. The sensitivity and measured limit of detection of the graphene/ZnONFs for levodopa are 0.32 µA µM−1 and 1 µM in the range of 1–60 µM, respectively. The graphene/ZnONFs also show good selectivity, repeatability and stability for the determination of levodopa. The proposed electrode is also successfully used to determine levodopa in human urine samples and it is potential for use in clinical research.



This work is supported by the Natural Science Foundation of Heilongjiang Province (LC2015020), Technology Foundation for Selected Overseas Chinese Scholar, Ministry of Personnel of China (2015192), the innovative talent fund of Harbin city (2016RAQXJ185) and Science Funds for the Young Innovative Talents of HUST (201604).


  1. 1.
    J.B. Raoof, R. Ojani, M. Amiri-Aref, M. Baghayeri, Electrodeposition of quercetin at a multi-walled carbon nanotubes modified glassy carbon electrode as a novel and efficient voltammetric sensor for simultaneous determination of levodopa, uric acid and tyramine. Sens. Actuators B 166, 508–518 (2012)CrossRefGoogle Scholar
  2. 2.
    A. Babaei, A.R. Taheri, I.K. Farahani, Nanomolar simultaneous determination of levodopa and melatonin at a new cobalt hydroxide nanoparticles and multi-walled carbon nanotubes composite modified carbon ionic liquid electrode. Sens. Actuators B 183, 265–272 (2013)CrossRefGoogle Scholar
  3. 3.
    M.F. Abdel-Ghany, L.A. Hussein, M.F. Ayad, Investigation of different spectrophotometric and chemometric methods for determination of entacapone, levodopa and carbidopa in ternary mixture. Spectrochim. Acta A 171, 236–245 (2016)CrossRefGoogle Scholar
  4. 4.
    G.Z. Tsogas, D.V. Stergiou, A.G. Vlessidis, N.P. Evmiridis, Development of a sensitive flow injection-chemiluminescence detection method for the indirect determination of propranolol. Anal. Chim. Acta 541, 149–155 (2005)CrossRefGoogle Scholar
  5. 5.
    R.O. Vilhena, F.L. Pontes, B.M. Marson, A new HILIC-MS/MS method for the simultaneous analysis of carbidopa, levodopa, and its metabolites in human plasma. J. Chromatogr. B 967, 41–52 (2014)CrossRefGoogle Scholar
  6. 6.
    S.K. Arya, P. Kongsuphol, K.P. Mi, Off surface matrix based on-chip electrochemical biosensor platform for protein biomarker detection in undiluted serum. Biosens. Bioelectron. 92, 542–549 (2017)CrossRefGoogle Scholar
  7. 7.
    K. Hassan, G.S. Chung, Catalytically activated quantum-size Pt/Pd bimetallic core–shell nanoparticles decorated on ZnO nanorod clusters for accelerated hydrogen gas detection. Sens. Actuators B 239, 824–833 (2017)CrossRefGoogle Scholar
  8. 8.
    R. Ahmad, N. Tripathy, N.K. Jang, G. Khang, Y.B. Hahn, Fabrication of highly sensitive uric acid biosensor based on directly grown ZnO nanosheets on electrode surface. Sens. Actuators B 206, 146–151 (2015)CrossRefGoogle Scholar
  9. 9.
    E. Zehani, S. Hassani, A. Lusson, J. Vigneron, A. Etcheberry, Reconstruction of perfect ZnO nanowires facets with high optical quality. Appl. Surf. Sci. 411, 374–378 (2017)CrossRefGoogle Scholar
  10. 10.
    Y. Li, A. Paulsen, I. Yamada, Y. Koide, J.J. Delaunay, Bascule nanobridges self-assembled with ZnO nanowires as double schottky barrier UV switches. Nanotechnology 21, 502–513 (2010)Google Scholar
  11. 11.
    W. Guo, L.X. Qin, H. Wang, Z. PEG-20000 assisted hydrothermal synthesis of hierarchical ZnO flowers: structure, growth and gas sensor properties. Physica E 73, 163–168 (2015)CrossRefGoogle Scholar
  12. 12.
    A.R. Marlinda, A. Pandikumar, N. Yusoff, N.M. Huang, H.N. Lim, Electrochemical sensing of nitrite using a glassy carbon electrode modified with reduced functionalized graphene oxide decorated with flower-like zinc oxide. Microchim. Acta 182, 1113–1122 (2015)CrossRefGoogle Scholar
  13. 13.
    S.K. Arya, S. Saha, J.E. Ramirez-Vick, V. Gupta, S. Bhansali, Recent advances in ZnO nanostructures and thin films for biosensor applications: review. Anal. Chim. Acta 737, 1–21 (2012)CrossRefGoogle Scholar
  14. 14.
    K. Zhao, X. Yan, Y. Gu, Z. Kang, Z. Bai, S. Cao, Y. Liu, Self-powered photoelectrochemical biosensor based on CdS/RGO/ZnO nanowire array heterostructure. Small 12, 245–251 (2016)CrossRefGoogle Scholar
  15. 15.
    C.Y. Lee, K.S. Park, Y.K. Jung, H.G. Park, A label-free fluorescent assay for deoxyribonuclease I activity based on DNA-templated silver nanocluster/graphene oxide nanocomposite. Biosens. Bioelectron. 93, 293–297 (2017)CrossRefGoogle Scholar
  16. 16.
    Y.M. Lei, M.M. Xiao, Y.T. Li, L. Xu, H. Zhang, Detection of heart failure-related biomarker in whole blood with graphene field effect transistor biosensor. Biosens. Bioelectron. 91, 1–7 (2017)CrossRefGoogle Scholar
  17. 17.
    X. Zhang, J. Dong, X. Qian, C. Zhao, One-pot synthesis of an RGO/ZnO nanocomposite on zinc foil and its excellent performance for the nonenzymatic sensing of xanthine. Sens. Actuators B 221, 528–536 (2015)CrossRefGoogle Scholar
  18. 18.
    G. Wang, B. Wang, J. Park, Y. Wang, B. Sun, J. Yao, Highly efficient and large-scale synthesis of graphene by electrolytic exfoliation. Carbon 47, 3242–3246 (2009)CrossRefGoogle Scholar
  19. 19.
    C. Holroyd, A.B. Horn, C. Casiraghi, S.P.K. Koehler, Vibrational fingerprints of residual polymer on transferred CVD-graphene. Carbon 117, 473–475 (2017)CrossRefGoogle Scholar
  20. 20.
    M.H. Yang, J.M. Jeong, S.H. Yun, High-performance supercapacitor based on three-dimensional MoS2/graphene aerogel composites. Compos. Sci. Technol. 121, 123–128 (2015)CrossRefGoogle Scholar
  21. 21.
    K. Varmira, G. Mohammadi, M. Mahmoudi et al. Fabrication of a novel enzymatic electrochemical biosensor for determination of tyrosine in some food samples. Talanta 183,183–202 (2018)CrossRefGoogle Scholar
  22. 22.
    H.Y. Yue, B. Wang, S. Huang et al., Determination of levodopa in the presence of uric acid using a ZnO nanoflower-modified indium tin oxide glass electrode. Ionics 23(12), 1–8 (2017)CrossRefGoogle Scholar
  23. 23.
    J. Ghodsi, A.A. Rafati, Y. Shoja, First report on hemoglobin electrostatic immobilization on WO3 nanoparticles: application in the simultaneous determination of levodopa, uric acid, and folic acid. Anal. Bioanal. Chem. 408, 3899–3909 (2016)CrossRefGoogle Scholar
  24. 24.
    N. Lavanya, E. Fazio, F. Neri, A. Bonavita, S.G. Leonardi, G. Neri, Electrochemical sensor for simultaneous determination of ascorbic acid, uric acid and folic acid based on Mn-SnO2 nanoparticles modified glassy carbon electrode. J. Electroanal. Chem. 770, 23–32 (2016)CrossRefGoogle Scholar
  25. 25.
    E. Eksin, E. Zor, A. Erdem, H. Bingol, Electrochemical monitoring of biointeraction by graphene-based material modified pencil graphite electrode. Biosens. Bioelectron. 92, 207–214 (2017)CrossRefGoogle Scholar
  26. 26.
    H. Yaghoubian, H. Karimi-Maleh, M.A. Khalilzadeh, F. Karimi, Electrocatalytic oxidation of levodopa at a ferrocene modified carbon nanotube paste electrode. Int. J. Electrochem. Sci. 4, 993–1003 (2009)Google Scholar
  27. 27.
    M.A. Sheikh-Mohseni, S. Pirsa, Nanostructured conducting polymer/copper oxide as a modifier for fabrication of l-dopa and uric acid electrochemical sensor. Electroanalysis 28, 2075–2080 (2016)CrossRefGoogle Scholar
  28. 28.
    B. Rezaei, L. Shamsghahfarokhi, E. Havakeshian, A.A. Ensafi, An electrochemical biosensor based on nanoporous stainless steel modified by gold and palladium nanoparticles for simultaneous determination of levodopa and uric acid. Talanta 158, 42–50 (2016)CrossRefGoogle Scholar
  29. 29.
    A. Babaei, M. Babazadeh, A selective simultaneous determination of levodopa and serotonin using a glassy carbon electrode modified with multiwalled carbon nanotube/chitosan composite. Electroanalysis 23, 1726–1735 (2011)CrossRefGoogle Scholar
  30. 30.
    M. Baghayeri, M. Namadchian, Fabrication of a nanostructured luteolin biosensor for simultaneous determination of levodopa in the presence of acetaminophen and tyramine: application to the analysis of some real samples. Electrochim. Acta 108, 22–31 (2013)CrossRefGoogle Scholar
  31. 31.
    A. Afkhami, F. Kafrashi, T. Madrakian, Electrochemical determination of levodopa in the presence of ascorbic acid by polyglycine/ZnO nanoparticles/multi-walled carbon nanotubes-modified carbon paste electrode. Ionics 21, 2937–2947 (2015)CrossRefGoogle Scholar
  32. 32.
    A. Martín, J. Hernández-Ferrer, A. Escarpa, Graphene nanoribbon-based electrochemical sensors on screen-printed platforms. Electrochim. Acta 172, 2–6 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Hong Yan Yue
    • 1
    Email author
  • Bao Wang
    • 1
  • Shuo Huang
    • 1
    • 2
  • Xin Gao
    • 1
  • Shan Shan Song
    • 1
  • En Hao Guan
    • 1
  • Hong Jie Zhang
    • 1
  • Peng Fei Wu
    • 1
  • Xin Rui Guo
    • 1
  1. 1.School of Materials Science and EngineeringHarbin University of Science and TechnologyHarbinPeople’s Republic of China
  2. 2.Department of NeurologyThe First Affiliated Hospital of Harbin Medical UniversityHarbinPeople’s Republic of China

Personalised recommendations