Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 17, pp 14890–14896 | Cite as

Research on hydrophobicity treatment of aluminum nitride powder and the fabrication and characterization of AlN/PTFE composite substrates

  • Ying YuanEmail author
  • Zhifeng Chi
  • Bin Tang
  • Enzhu Li
  • Shuren Zhang


A study on fabrication and characterization of different filler ratios AlN/ PTFE composite substrates was described. Phenyltrimethoxysilane (Z6124) was used to modify AlN ceramic powder. The contents of Z6124 were 0.8, 1.0, 1.2, 1.4, 1.6 wt%, respectively. The infrared spectroscopy, microstructure, contact angle and the pH changes in water of AlN ceramic powder were investigated in detail. The results revealed that 1.0 wt% Z6124 modified AlN ceramic powder exhibited the largest contact angle (θ = 148.4°), obvious coupling agent characteristic peak, and excellent water resistance. Next, 1.0 wt% Z6124 modified AlN powders were used to manufacture AlN/PTFE composites, and the contents of AlN ceramic filler were 25, 30, 35, 40, 45, 50 and 55 wt%, respectively. The effects of AlN ceramic content on the microwave dielectric properties, water absorption and thermal conductivity of AlN/PTFE composite substrates were systematically investigated. When the content of filler was 45 wt%, composite substrates exhibited reliable dielectric constant (εr = 3.38), acceptable dielectric loss (tan δ = 0.006) and excellent temperature coefficient of dielectric constant (− 32.6 ppm/°C), lower water absorption (0.056%) and high thermal conductivity (0.957 W/m K).



This work was supported by Science and Technology Planning Project of Guangdong Province, China (Grant No. 2017A010103001).


  1. 1.
    D.M. Price, M. Jarratt, Thermochim. Acta 392, 231 (2002)CrossRefGoogle Scholar
  2. 2.
    Y. Yuan, H. Lin, D. Yu, Y. Yin, B. Tang, E. Li, S. Zhang, J. Mater. Sci. Mater. Electron. 28, 1 (2017)Google Scholar
  3. 3.
    J.T. Shen, M. Top, Y.T. Pei, J.T.M.D. Hosson, Wear 322, 171 (2014)Google Scholar
  4. 4.
    C. Suiyuan, S. Ying, F. Hong, L. Jing, L. Changsheng, S. Kai, J. Compos. Mater. 46, 1405 (2012)CrossRefGoogle Scholar
  5. 5.
    A. Tang, M. Wang, W. Huang, X. Wang, Surf. Coat. Technol. 282, 121 (2015)CrossRefGoogle Scholar
  6. 6.
    K.T. Wu, Y. Yuan, S.R. Zhang, X.Y. Yan, Y.R. Cui, J. Polym. Res. 20, 223 (2013)CrossRefGoogle Scholar
  7. 7.
    B.M. Lairson, M.R. Visokay, R. Sinclair, B.M. Clemens, Appl. Phys. Lett. 62, 639 (1993)CrossRefGoogle Scholar
  8. 8.
    G. Pezzotti, I. Kamada, S. Miki, J. Eur. Ceram. Soc. 20, 1197 (2000)CrossRefGoogle Scholar
  9. 9.
    Y. Xie, C.A.S. Hill, Z. Xiao, H. Militz, C. Mai, Compos. Part A 41, 806 (2010)CrossRefGoogle Scholar
  10. 10.
    T. Jesionowski, A. Krysztafkiewicz, Appl. Surf. Sci. 172, 18 (2001)CrossRefGoogle Scholar
  11. 11.
    G. Wu, Y. Wang, K. Wang, A. Feng, RSC Adv. 6, 102542 (2016)CrossRefGoogle Scholar
  12. 12.
    C. Pan, K. Kou, G. Wu, Y. Zhang, Y. Wang, J. Mater. Sci. Mater. Electron. 27, 286 (2016)CrossRefGoogle Scholar
  13. 13.
    Y. Yuan, Y. Yin, D. Yu, H. Lin, J. Wang, B. Tang, E. Li, J. Mater. Sci. Mater. Electron. 28, 1 (2016)Google Scholar
  14. 14.
    C. Pan, K. Kou, Q. Jia, Y. Zhang, Y. Wang, G. Wu, A. Feng, J. Mater. Sci. Mater. Electron. 27, 1 (2016)Google Scholar
  15. 15.
    H. Yue, K.L. Virga, J. Prince, Electron. Compon. Technol. Conf. 21, 1077 (1998)Google Scholar
  16. 16.
    K. Pathmanathan, J.Y. Cavaille, G.P. Johari, Polymers 29, 311 (1988)CrossRefGoogle Scholar
  17. 17.
    M.D. Re, J.P. Dauchot, M. Hecq, Surf. Coat. Technol. 200, 94 (2005)CrossRefGoogle Scholar
  18. 18.
    S.M. Olhero, S. Novak, M. Oliveira, K. Krnel, T. Kosmac, J.M.F. Ferreira, J. Mater. Res. 19, 746 (2004)CrossRefGoogle Scholar
  19. 19.
    T.I.T. Okpalugo, P. Papakonstantinou, H. Murphy, J. Mclaughlin, N. Brown, Carbon 43, 153 (2005)CrossRefGoogle Scholar
  20. 20.
    P. Mérel, M. Tabbal, M. Chaker, S. Moisa, J. Margot, Appl. Surf. Sci. 136, 105 (1998)CrossRefGoogle Scholar
  21. 21.
    Y. Yuan, J. Wang, M. Yao, B. Tang, E. Li, S. Zhang, J. Electron. Mater. 47, 1 (2018)CrossRefGoogle Scholar
  22. 22.
    S. Rajesh, K.P. Murali, H. Jantunen, R. Ratheesh, Phys. B. Condens. Matter. 406, 4312 (2011)CrossRefGoogle Scholar
  23. 23.
    Y.C. Chen, H.C. Lin, Y.D. Lee, J. Polym. Res. 10, 247 (2003)CrossRefGoogle Scholar
  24. 24.
    R.L. Smith Jr, S.B. Lee, H. Komori, K. Arai, Fluid Phase Equilib. 144, 315 (1998)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.National Engineering Center of Electromagnetic Radiation Control MaterialsUniversity of Electronic Science and Technology of ChinaChengduPeople’s Republic of China
  2. 2.State Key Laboratory of Electronic Thin Films and Integrated DevicesUniversity of Electronic Science and Technology of ChinaChengduPeople’s Republic of China
  3. 3.Institute of Electronic and Information Engineering of UESTC in GuangdongDongguanPeople’s Republic of China

Personalised recommendations