Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 17, pp 14874–14882 | Cite as

Designing visible-light-driven direct Z-scheme Ag2WO4/WS2 heterojunction to enhance photocatalytic activity

  • Xiang-Feng Wu
  • Hui Li
  • Jun-Cheng Pan
  • Yi-Jin Wang
  • Chen-Xu Zhang
  • Jun-Zhang Su
  • Jia-Rui Zhang
  • Ying Zhang
  • Wei-Guang Zhang
  • Li-Song Sun
  • Xiu-Guo Sun
Article
  • 110 Downloads

Abstract

The direct Z-scheme Ag2WO4/WS2 photocatalysts had been fabricated by using a deposition method. Experimental results indicated that WS2 nanosheets could improve the photocatalytic activity, light absorption and recyclability of Ag2WO4 under the visible light irradiation. The degradation efficiency of the as-obtained Ag2WO4/WS2 hybrids for rhodamine B displayed first increasing and then decreasing with increasing the usage of WS2 nanosheets. When the usage of WS2 was 15 wt%, in 120 min, it reached the maximum of 97.8%, which was higher than 17.8% of pure Ag2WO4. Moreover, after three cycles of the degradation, the as-prepared hybrids still possessed 94.4% of the degradation efficiency, which increased by 1211.1% compared with pure Ag2WO4. Moreover, superoxide and hydroxyl radicals played major role during the process of photocatalytic degradation. The enhanced photocatalytic activity could be ascribed to the formation of direct Z-scheme photocatalytic system between Ag2WO4 and WS2.

Notes

Acknowledgements

This work was supported by the Natural Science Foundation of Hebei Province, China (E2013210011 and B2016210111).

Compliance with ethical standards

Conflict of interest

The authors declare they have no conflicts of interest.

References

  1. 1.
    X.J. Bai, L. Wang, Y.F. Zhu, ACS Catal. 2, 2769–2778 (2016)CrossRefGoogle Scholar
  2. 2.
    S. Khanchandani, S. Kundu, A. Patra, A.K. Ganguli, J. Phys. Chem. C 116, 23653–23662 (2017)CrossRefGoogle Scholar
  3. 3.
    X.F. Wu, Y. Sun, H. Li, Y.J. Wang, C.X. Zhang, J.R. Zhang, J.Z. Su, Y.W. Wang, Y. Zhang, C. Wang, M. Zhang, J. Alloy. Compd. 740, 1197–1203 (2018)CrossRefGoogle Scholar
  4. 4.
    S.L. Hu, Z.J. Wei, Q. Chang, A. Trinchi, J. Yang, Appl. Surf. Sci. 378, 402–407 (2016)CrossRefGoogle Scholar
  5. 5.
    S.L. Hu, W.Y. Zhang, Q. Chang, J.L. Yang, K. Lin, Carbon 103, 391–393 (2016)CrossRefGoogle Scholar
  6. 6.
    S.L. Hu, Q. Chang, K. Lin, J.L. Yang, Carbon 105, 484–489 (2016)CrossRefGoogle Scholar
  7. 7.
    B. Sun, G.W. Zhou, T.T. Gao, H.J. Zhang, H.H. Yu, Appl. Surf. Sci. 364, 322–331 (2016)CrossRefGoogle Scholar
  8. 8.
    C.B.D. Marien, T. Cottineau, D. Robert, P. Droguib, Appl. Catal. B-Environ. 194, 1–6 (2016)CrossRefGoogle Scholar
  9. 9.
    X.Z. Liang, P. Wang, M.M. Li, Q.Q. Zhang, Z.Y. Wang, Y. Dai, X.Y. Zhang, Y.Y. Liu, M.H. Whangbo, B.B. Huang, Appl. Catal. B-Environ. 220, 356–361 (2018)CrossRefGoogle Scholar
  10. 10.
    S.A. Ansari, M.M. Khan, M.O. Ansari, J. Lee, J. Phys. Chem. C 117, 27023–27030 (2016)CrossRefGoogle Scholar
  11. 11.
    R. Boppella, K. Anjaneyulu, P. Basak, S.V. Manorama, J. Phys. Chem. C 117, 4597–4605 (2016)CrossRefGoogle Scholar
  12. 12.
    R. Gusain, P. Kumar, O.P. Sharma, S.L. Jain, O.P. Khatri, Appl. Catal. B-Environ. 181, 352–362 (2016)CrossRefGoogle Scholar
  13. 13.
    T.T. Jiang, J.H. Kong, Y.Q. Wang, D.W. Meng, D.G. Wang, M.H. Yu, Cryst. Res. Technol. 51, 58–64 (2016)CrossRefGoogle Scholar
  14. 14.
    Y. Zhang, J. Gu, M. Murugananthan, Y.R. Zhang, J. Alloy. Compd. 630, 110–116 (2015)CrossRefGoogle Scholar
  15. 15.
    S.Q. Song, B. Cheng, N.S. Wu, A. Meng, S. Cao, J. Yu, Appl. Catal. B-Environ. 181, 71-78 (2016)CrossRefGoogle Scholar
  16. 16.
    L. N.Wang.L.Z. Shi, C.Y. Yao, Y. Lu, J.M. Shi, Sun, RSC Adv. 8, 537–546 (2018)CrossRefGoogle Scholar
  17. 17.
    E.J. Wang, W.S. Yang, Y.A. Cao, J. Phys. Chem. C 113, 20912–20917 (2017)CrossRefGoogle Scholar
  18. 18.
    H. Sutanto, E. Hidayanto, S. Mukholit, I. Wibowo, Nurhasanah, Hadiyanto, Mater. Sci. Forum. 890, 121–126 (2017)CrossRefGoogle Scholar
  19. 19.
    M.C. Wu, P.Y. Wu, T.H. Lin, T.F. Lin, Appl. Surf. Sci. 430, 390–398 (2018)CrossRefGoogle Scholar
  20. 20.
    F.Z. Wang, W.J. Li, S.N. Gu, H.D. Li, H.L. Zhou, X.B. Wu, RSC Adv. 5, 89940–89950 (2015)CrossRefGoogle Scholar
  21. 21.
    L.C. Tien, J.L. Shih, RSC Adv. 6, 12561–12570 (2016)CrossRefGoogle Scholar
  22. 22.
    L. Wang, P. Wang, B.B. Huang, X.J. Ma, G. Wang, Y. Dai, X.Y. Zhang, X.Y. Qin, Appl. Surf. Sci. 391, 557–564 (2017)CrossRefGoogle Scholar
  23. 23.
    C.Y. Luo, W.Q. Huang, L. Xu, Y.C. Yang, X. Li, W. Hu, P. Peng, G.F. Huang, Phys. Chem. Chem. Phys. 18, 2878–2886 (2016)CrossRefGoogle Scholar
  24. 24.
    J.J. Liu, X.L. Fu, S.F. Chen, X.D. Zhu, Z.W. Qi, Appl. Catal. B-Environ. 200, 681–689 (2017)CrossRefGoogle Scholar
  25. 25.
    H.S. Zhai, T.J. Yan, P. Wang, Y. Yu, W.J. Li, J.M. You, B.B. Huang, Appl. Catal. A-Gen. 528, 104–112 (2016)CrossRefGoogle Scholar
  26. 26.
    P. Ju, Y. Wang, Y. Sun, D. Zhang, Dalton T. 45, 4588–4602 (2016)CrossRefGoogle Scholar
  27. 27.
    J.L. Zhu, M.J. Liu, Y.F. Tang, T.M. Sun, J.J. Ding, L.W. Han, M. Wang, Mater. Lett. 190, 60–63 (2017)CrossRefGoogle Scholar
  28. 28.
    Y. Wang, J. Sunarso, G.H. Chen, Y.Y. Wei, Mater. Lett. 197, 102–105 (2017)CrossRefGoogle Scholar
  29. 29.
    D.P. Dutta, A. Singh, A. Ballal, A.K. Tyagi, Eur. J. Inorg. Chem. 46, 5724–5732 (2015)Google Scholar
  30. 30.
    D.P. Dutta, P. Raval, J. Photochem. Photobiol. A 357, 193–200 (2018)CrossRefGoogle Scholar
  31. 31.
    M. Eghbali-Arani, A. Sobhani-Nasab, M. Rahimi-Nasrabadi, F. Ahmadi, S. Pourmasoud, Ultrason. Sonochem. 43, 120–135 (2018)CrossRefGoogle Scholar
  32. 32.
    S. Pourmasoud, A. Sobhani-Nasab, M. Behpour, M. Rahimi-Nasrabadi, F. Ahmadi, J. Mol. Struct. 1157, 607–615 (2018)CrossRefGoogle Scholar
  33. 33.
    Y.F. Li, R.X. Jin, X. Fang, Y. Yang, M. Yang, X.C. Liu, Y. Xing, S.Y. Song, J. Hazard. Mater. 313, 219–228 (2016)CrossRefGoogle Scholar
  34. 34.
    H. Xu, Y.L. Cao, J. Xie, J.D. Hu, Y.Z. Li, D.Z. Jia, Mater. Res. Bull. 102, 342–352 (2018)CrossRefGoogle Scholar
  35. 35.
    S.J. Li, W. Jiang, S.W. Hu, Y. Liu, J.S. Liu, Mater. Lett. 224, 29–32 (2018)CrossRefGoogle Scholar
  36. 36.
    T.A. Shifa, F.M. Wang, Z.Z. Cheng, X.Y. Zhan, Z.X. Wang, K.L. Liu, M. Safdar, L.F. Sun, J. He, Nanoscale 7, 14760–14765 (2015)CrossRefGoogle Scholar
  37. 37.
    Y.Y. Zhong, Y.G. Shao, F.K. Ma, Nano Energy 31, 84–89 (2017)CrossRefGoogle Scholar
  38. 38.
    H.T. Zhao, R.R. Sun, X.Y. Li, X. Sun, Mater. Sci. Semicond. Proc. 59, 68–75 (2017)CrossRefGoogle Scholar
  39. 39.
    B.C. Qiu, Q.H. Zhu, M.M. Du, L.G. Fan, M.Y. Xing, J.L. Zhang, Angew. Chem. Int. Edit. 56, 2684–2688 (2017)CrossRefGoogle Scholar
  40. 40.
    X.F. Wu, Z.H. Zhao, Y. Sun, H. Li, C.X. Zhang, Y.J. Wang, Y. Liu, Y.D. Wang, X.Y. Yang, X.D. Gong, J. Nanopart. Res. (2017).  https://doi.org/10.1007/s11051-017-3892-9 Google Scholar
  41. 41.
    X.F. Wu, H. Li, Y. Sun, Y.J. Wang, C.X. Zhang, J.Z. Su, J.R. Zhang, F.F. Yang, Y. Zhang, J.C. Pan, Appl. Phys. A-Mater. (2017).  https://doi.org/10.1007/s00339-017-1286-6 Google Scholar
  42. 42.
    Y.J. Zou, J.W. Shi, D.D. Ma, Z.Y. Fan, L.H. Cheng, D.K. Sun, Z.Y. Wang, C.M. Niu, ChemSusChem (2018).  https://doi.org/10.1002/cssc.201800053 Google Scholar
  43. 43.
    X.F. Wu, H. Li, J.Z. Su, J.R. Zhang, Y.M. Feng, J.C. Pan, Y. Zhang, L.S. Sun, W.G. Zhang, G.W. Sun, J. Nanopart. Res. (2018).  https://doi.org/10.1007/s11051-018-4257-8 Google Scholar
  44. 44.
    X.F. Wu, H. Li, Y. Sun, Y.J. Wang, C.X. Zhang, X.D. Gong, Y.D. Wang, Y. Liu, X.Y. Yang, Appl. Phys. A-Mater. (2017).  https://doi.org/10.1007/s00339-017-1016-0 Google Scholar
  45. 45.
    D.Q. Liu, W.C. Huang, L. Li, L. Liu, X. Sun, B. Liu, B. Yang, C. Guo, Nanotechnology (2017).  https://doi.org/10.1088/1361-6528/aa7d96 Google Scholar
  46. 46.
    Y.H. Sang, Z.H. Zhao, M.W. Zhao, P. Hao, Y.H. Leng, H. Liu, Adv. Mater. 27, 363–369 (2015)CrossRefGoogle Scholar
  47. 47.
    H. Li, X.F. Wu, Y. Sun, Z.H. Zhao, C.X. Zhang, F.F. Jia, H. Zhang, M.T. Yu, X.Y. Yang, J. Nanosci. Nanotechnol. 18, 999–1005 (2018)CrossRefGoogle Scholar
  48. 48.
    H.J. Yu, Y. Yu, J.H. Liu, P.Y. Ma, Y.C. Wang, F. Zhang, Z.Y. Fu, J. Mater. Chem. A 3, 19439–19444 (2015)CrossRefGoogle Scholar
  49. 49.
    X.L. Jiang, X.Z. Liu, Q.Q. Chen, R. Jin, Y. Lu, J. Yu, J. Inorg. Organomet. Polym. 27, 1683–1693 (2017)CrossRefGoogle Scholar
  50. 50.
    Z.Y. Lin, J.L. Li, Z.Q. Zheng, J.H. Yan, P. Liu, C. Wang, G. Yang, ACS Nano 9, 7256–7265 (2015)CrossRefGoogle Scholar
  51. 51.
    D.Q. Gao, C.Q. Sun, J.Y. Zhang, D.S. Xue, J. Mater. Chem. A 4, 11234–11238 (2016)CrossRefGoogle Scholar
  52. 52.
    F. Raza, D. Yim, J.H. Park, H.I. Kim, S.J. Jeon, J.H. Kim, J. Am. Chem. Soc. 139, 14767–14774 (2017)CrossRefGoogle Scholar
  53. 53.
    J.X. Yu, Q.Y. Nong, X.L. Jiang, X.Z. Liu, Y. Wu, Y.M. He, Sol. Energy 139, 355–364 (2016)CrossRefGoogle Scholar
  54. 54.
    C. Lv, G. Chen, X. Zhou, C.M. Zhang, Z.K. Wang, B.R. Zhao, D.Y. Li, ACS Appl. Mater. Inter. 9, 23748–23755 (2017)CrossRefGoogle Scholar
  55. 55.
    L.Q. Shao, J. Li, X.M. Liang, T. Xie, S.C. Meng, D.L. Jiang, M. Chen, RSC Adv. 6, 18227–18234 (2016)CrossRefGoogle Scholar
  56. 56.
    R.X. Zhou, J. Wu, J. Zhang, H. Tian, P.K. Liang, T. Zeng, P. Lu, J.X. Ren, T.F. Huang, X. Zhou, P.F. Sheng, Appl. Catal. B-Environ. 204, 465–474 (2017)CrossRefGoogle Scholar
  57. 57.
    Z.Y. Zhang, D.L. Jiang, D. Li, M.Q. He, M. Chen, Appl. Catal. B-Environ. 183, 113–123 (2016)CrossRefGoogle Scholar
  58. 58.
    P.F. Tan, X. Chen, L.D. Wu, Y.Y. Shang, W.W. Liu, J. Pan, X. Xiong, Appl. Catal. B-Environ. 202, 326–334 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Materials Science and Engineering, Hebei Provincial Key Laboratory of Traffic Engineering MaterialsShijiazhuang Tiedao UniversityShijiazhuangChina

Personalised recommendations