Advertisement

The ac conductivity of binary chalcogenide glasses \({\text {Se}}_{100-x}{\text {X}}_{x}\) (X = Ge, In, Te)

  • Ram Murti
  • S. K. Tripathi
  • Navdeep Goyal
  • Satya Prakash
Article
  • 5 Downloads

Abstract

The random free energy barrier hopping model is used to investigate the temperature and frequency dependent ac conductivity \(\sigma _{ac}(\omega )\) of binary chalcogenide glasses \({\text {Se}}_{100-x}{\text {X}}_{x}\) (X = Ge, In, Te). The temperature dependent barrier height leads to Meyer–Neldel (MN) rule. The calculated MN energy \(E_{MN}\) is in good agreement with the experimental estimates. The \(\sigma _{ac}(\omega )\) is taken as the sum of bipolaron and single polaron hopping conductivities \(\sigma _{b}(\omega )\) and \(\sigma _{s}(\omega ),\) respectively. The calculated results are in close agreement with the experimental data. It is found that \(\sigma _{s}\) is smaller by orders of magnitude than \(\sigma _{b}\) in \({\text {Se}}_{100-x}{\text {Ge}}_{x}\) alloys in the temperature range 250–400 K, while in \({\text {Se}}_{100-x}{\text {Te}}_{x}\) alloys \(\sigma _{ac}(\omega )\) is mainly due to \(\sigma _{b}\) in the temperature range 150–250 K and \(\sigma _{s}\) becomes significant above 250 K. However in \({\text {Se}}_{100-x}{\text {In}}_{x}\) alloys in the temperature range 303–333 K, \(\sigma _{b}\) is nearly temperature independent and \(\sigma _{ac}(\omega )\) is mainly due to \(\sigma _{s}.\) It is found that acoustic phonons assist hopping process in \({\text {Se}}_{100-x}{\text {Ge}}_{x}\) and \({\text {Se}}_{100-x}{\text {Te}}_{x}\) alloys, while both high energy acoustic and low energy optical phonons assist hopping process in \({\text {Se}}_{100-x}{\text {In}}_{x}\) alloys.

Notes

Acknowledgements

The authors are thankful to Professor G. S. S. Saini and Ms. Swati Khatta for their kind help. The financial support of DST with Grant No. SR/S2/CMP-28/2012 SERB is also acknowledged.

References

  1. 1.
    N.F. Mott, E.A. Davis, Electronic Processes in Non-crystalline Materials (Clarendon, Oxford, 1979)Google Scholar
  2. 2.
    A.B. Seddon, Chalcogenide glasses: a review of their preparation, properties and applications. J. Noncryst. Solids 184, 44–50 (1995)CrossRefGoogle Scholar
  3. 3.
    J.S. Sanghera, I.D. Aggrawal, Active and passive chalcogenide glass optical fibres for IR applications: a review. J. Noncryst. Solids 256, 6–16 (1999)CrossRefGoogle Scholar
  4. 4.
    V. Sharma, A. Thakur, N. Goyal, G.S.S. Saini, S.K. Tripathi, Transient photoconductivity in \({\text{ Se }}_{85-x}{\text{ Te }}_{15}{\text{ In }}_{x}\) thin films. J. Optoelectron. Adv. Mater. 7, 2103–2112 (2005)Google Scholar
  5. 5.
    N. Tohge, Y. Yamamoto, T. Minami, M. Tanaka, Preparation of n-type semiconducting \({\text{ Ge }}_{20}{\text{ Bi }}_{10}{\text{ Se }}_{70}\) glass. Appl. Phys. Lett. 34, 640–641 (1979)CrossRefGoogle Scholar
  6. 6.
    R.M. Mehra, A.G. Gurinder, P.C. Mathur, Effect of In impurity on crystallization kinetics of \(({\text{ Se }}_{.7}{\text{ Te }}_{.3})_{100-x}{\text{ In }}_{x}\) system. J. Therm. Anal. 45, 405–415 (1995)CrossRefGoogle Scholar
  7. 7.
    M. Saxena, A crystallization study of amorphous \({\text{ Te }}_{x}({\text{ Bi }}_{2}{\text{ Se }}_{3})_{1-x}\) alloys with variation of the Se content. J. Phys. D 38, 460–463 (2005)CrossRefGoogle Scholar
  8. 8.
    S. Shukla, S. Kumar, Photoconductivity and high-field effects in amorphous \({\text{ Se }}_{83}{\text{ Te }}_{15}{\text{ Zn }}_{2}\) thin film. Bull. Mater. Sci. 34, 1351–1355 (2011)CrossRefGoogle Scholar
  9. 9.
    K. Sharma, M. Lal, N. Goyal, Optical properties of amorphous \({\text{ Se }}_{80-x}{\text{ Te }}_{20}{\text{ Bi }}_{x}\) thin films. J. Optoelectron. Biomed. Mater. 6, 27–34 (2014)Google Scholar
  10. 10.
    G.B. Abdullaev, E.S. Guseinova, B.G. Tagiev, Electrical conductivity of n-InSe single crystals in strong electric fields. Phys. Status Solidi 17, 593–596 (1966)CrossRefGoogle Scholar
  11. 11.
    K. Singh, N.S. Saxena, O.N. Srivastava, D. Patidar, T.P. Sharma, Energy band gap of \({\text{ Se }}_{100-x}{\text{ In }}_{x}\) chalcogenide glasses. Chalcogenide Lett. 3, 33–36 (2006)Google Scholar
  12. 12.
    A. Zolanvari, N. Goyal, S.K. Tripathi, Electrical properties of a-\({\text{ Ge }}_{x}{\text{ Se }}_{100-x}\). Pramana J. Phys. 63, 617–625 (2004)CrossRefGoogle Scholar
  13. 13.
    N. Mehta, D. Kumar, S. Kumar, A. Kumar, Applicability of CBH model in the ac conduction study glassy \({\text{ Se }}_{100-x}{\text{ In }}_{x}\) alloys. Chalcogenide Lett. 2, 103–109 (2005)Google Scholar
  14. 14.
    R.M. Mehra, P.C. Mathur, A.K. Kathuria, R. Shayam, Frequency dependence of conductivity of bulk amorphous selenium and tellurium-doped selenium. Phys. Rev. B 18, 5620–5624 (1978)CrossRefGoogle Scholar
  15. 15.
    R. Murti, S.K. Tripathi, N. Goyal, S. Prakash, Random free energy barrier hopping model for ac conduction in chalcogenide glasses. AIP Adv. 06, 035010–035014 (2016)CrossRefGoogle Scholar
  16. 16.
    M. Pollak, T.H. Geballe, Low-frequency conductivity due to hopping processes in silicon. Phys. Rev. 122, 1742–1753 (1961)CrossRefGoogle Scholar
  17. 17.
    S.R. Elliot, Ac conduction in amorphous chalcogenide and pnictide semiconductors. Adv. Phys. 36, 135–218 (1987)CrossRefGoogle Scholar
  18. 18.
    G.E. Pike, ac conductivity of Scandium Oxide and a new hopping model for conductivity. Phys. Rev. B 6, 1572–1580 (1972)CrossRefGoogle Scholar
  19. 19.
    A.R. Long, Frequency-dependent loss in amorphous semiconductors. Adv. Phys. 31, 553–637 (1982)CrossRefGoogle Scholar
  20. 20.
    M. Pollak, On the frequency dependence of conductivity in amorphous solids. Philos. Mag. 23, 519–542 (1971)CrossRefGoogle Scholar
  21. 21.
    S. Prakash, K. Kaur, N. Goyal, S.K. Tripathi, Meyer–Neldel DC conduction in chalcogenide glasses. Pramana J. Phys. 76, 629–637 (2011)CrossRefGoogle Scholar
  22. 22.
    S.R. Elliot, A theory of ac conduction in chalcogenide glasses. Philos. Mag. 36, 1291–1304 (1977)CrossRefGoogle Scholar
  23. 23.
    D. Emin, Pair breaking in semiclassical singlet small-bipolaron hopping. Phys. Rev. B 53, 1260–1268 (1996)CrossRefGoogle Scholar
  24. 24.
    O. Chauvet et al., Spin susceptibility of boron carbides: dissociation of singlet small bipolarons. Phys. Rev. B 53, 14450–14457 (1996)CrossRefGoogle Scholar
  25. 25.
    K. Shimakawa, On the temperature dependence of ac conduction in chalcogenide glasses. Philos. Mag. B 46, 123–135 (1982)CrossRefGoogle Scholar
  26. 26.
    N. Mehta, A. Kumar, Pre-exponential factor of Arrhenius equation for the isothermal crystallization of some Se–Ge, Se–In and Se–Te chalcogenide glasses. J. Mater. Sci. 42, 490–494 (2007)CrossRefGoogle Scholar
  27. 27.
    C.M. Muiva, T.S. Sathiaraj, J.M. Mwabora, K. Maabong, Observation of Meyer–Neldel rule in \({\text{ Se }}_{100-x}{\text{ M }}\,({\text{ M }} = {\text{ In }},\,{\text{ Sb }})_{x}\) chalcogenide glasses. Ceram. Int. A 41, 2348–2352 (2015)CrossRefGoogle Scholar
  28. 28.
    R. Arora, A. Kumar, Electrical conduction in chalcogenide glasses. Applicability of the Meyer–Neldel rule. Phys. status solidi (a) 125, 273–278 (1991)CrossRefGoogle Scholar
  29. 29.
    D. Emin, Generalized adiabatic polaron hopping: Meyer–Neldel compensation and Poole–Frenkel behavior. Phys. Rev. Lett. 100, 166602–166604 (2008)CrossRefGoogle Scholar
  30. 30.
    C. Russell, Photodarkening of germanium-selenium glasses induced by below-bandgap light, PhD Thesis, University of Florida (USA) (2000)Google Scholar
  31. 31.
    A. Mandoza-Galvan, G.E. Garcia, Y.V. Vorobiev, J.G. Hernandez, Structural, optical and electrical characterization of amorphous \({\text{ Se }}_{x}{\text{ Te }}_{1-x}\) thin film alloys. Microelectron. Eng. 51–52, 677–687 (2000)CrossRefGoogle Scholar
  32. 32.
    T. Derrey, J.M. Saiter, J.P. Larmagnac, C. Vautier, Structural relaxation below \(T_{g}\) of amorphous germanium–selenium alloys. Mater. Lett. 3, 308–310 (1985)CrossRefGoogle Scholar
  33. 33.
    R.S. Tiwari, N. Mehta, R.K. Shukla, A. Kumar, Kinetic parameters of glass transition in glassy \(({\text{ Se }}_{80}{\text{ Ge }}_{20})_{100-x}{\text{ Bi }}_{x}\) alloys. J. Optoelectron. Adv. Mater. 8, 1211–1215 (2006)Google Scholar
  34. 34.
    H.Y. Lee, S.H. Park, J.Y. Chun, H.B. Chung, Photo induced transformations in amorphous \({\text{ Se }}_{75}{\text{ Ge }}_{25}\) thin film by XeCl excimer-laser exposure. J. Appl. Phys. 83, 5381–5385 (1998)CrossRefGoogle Scholar
  35. 35.
    Y. Calventus, S. Surinach, M.D. Baro, Crystallization mechanisms of some \({\text{ Se }}_{100-x}{\text{ Te }}_{x}\) glassy alloys. J. Mater. Res. 12, 1069–1075 (1997)CrossRefGoogle Scholar
  36. 36.
    N. Mehta, R.K. Shukla, A. Kumar, Effect of some metallic additives on the kinetics of glass transition in \({\text{ Se }}_{80}{\text{ Te }}_{20}\) glassy alloy. Chalcogenide Lett. 1, 131–137 (2004)Google Scholar
  37. 37.
    S. Mahadevan, A. Giridhar, Charged defects-controlled conductivity in Ge–In–Se glasses. J. Mater. Sci. 29, 3837–3842 (1994)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Centre of Advanced Study in Physics, Department of PhysicsPanjab UniversityChandigarhIndia

Personalised recommendations