Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 17, pp 14852–14857 | Cite as

Structural and optical property studies of TiO2 nanotube arrays prepared by anodic oxidation

  • Xishun Jiang
  • Shaokang Zheng
  • Yonghua Shi
  • Zhaoqi Sun
  • Yuxia ZhaoEmail author


TiO2 nanotube arrays (NTs) have been prepared by anodic oxidation and the oxidation voltages are 20, 30, 40 and 50 V, respectively. Microstructure, chemical composition and optical property of the TiO2 NTs were investigated. XRD and Raman spectra analysis show that the good crystal performance of TiO2 NTs obtained at the above voltages. The obtained samples are mainly composed of morphology nanotube arrays and TiO2 NTs are emerged at lower oxidation voltages. The Ti and O surface atom ratio for the sample prepared at 30 V is estimated about 1:2.14. UV–Visible absorption spectra analyses indicate that absorption edge appears slight blue shift phenomenon when the oxidation voltage rises and the absorption intensity decreases at the same time. The calculated optical band gaps for all samples are close to the standard value 3.2 eV of TiO2.



This work is supported by the National Natural Science Foundation of China (No. 51772003), Anhui Provincial Natural Science Foundation (1608085ME95), the State Key Laboratory of Metastable Materials Science and Technology, China (2018014), the Anhui University Provincial Natural Science Research Project, China (KJ2016A524 and KJ2017B04), the Higher Education Excellent Youth Talents Foundation of Anhui Province (gxyqZD2016328), and the Research Project of Chuzhou University (2017qd06).


  1. 1.
    J. Tian, Y. Leng, Z. Zhao, Y. Xia, Y. Sang, P. Hao, J. Zhan, M. Li, H. Liu, Nano Energy 11, 419–427 (2015)CrossRefGoogle Scholar
  2. 2.
    Z. Ren, J. Wang, Z. Pan, K. Zhao, H. Zhang, Y. Li, Y. Zhao, I. Mora-Sero, J. Bisquert, X. Zhong, Chem. Mater. 27, 8398–8405 (2015)CrossRefGoogle Scholar
  3. 3.
    B. Wu, D. Liu, S. Mubeen, T.T. Chuong, M. Moskovits, G.D. Stucky, J. Am. Chem. Soc. 138, 1114–1117 (2016)CrossRefGoogle Scholar
  4. 4.
    W. Li, F. Wang, Y. Liu, J. Wang, J. Yang, L. Zhang, A.A. Elzatahry, D. Al-Dahyan, Y. Xia, D. Zhao, Nano Lett. 15, 2186–2193 (2015)CrossRefGoogle Scholar
  5. 5.
    B.C. O’Regan, P.R.F. Barnes, X. Li, C. Law, E. Palomares, J.M. Marin-Beloqui, J. Am. Chem. Soc. 137, 5087–5099 (2015)CrossRefGoogle Scholar
  6. 6.
    C. Liu, L. Wang, Y. Tang, S. Luo, Y. Liu, S. Zhang, Y. Zeng, Y. Xua, Appl. Catal. B 164, 1–9 (2015)CrossRefGoogle Scholar
  7. 7.
    J. Low, B. Cheng, J. Yu, Appl. Surf. Sci. 392, 658–686 (2017)CrossRefGoogle Scholar
  8. 8.
    M.J. Powell, R. Quesada-Cabrera, A. Taylor, D. Teixeira, I. Papakonstantinou, R.G. Palgrave, G. Sankar, I.P. Parkin, Chem. Mater. 28, 1369–1376 (2016)CrossRefGoogle Scholar
  9. 9.
    E. Bet-moushoul, Y. Mansourpanah, Kh Farhadi, M. Tabatabaei, Chem. Eng. J. 283, 29–46 (2016)CrossRefGoogle Scholar
  10. 10.
    Z. Hou, Y. Zhang, K. Deng, Y. Chen, X. Li, X. Deng, Z. Cheng, H. Lian, C. Li, J. Lin, ACS Nano 9, 2584–2599 (2015)CrossRefGoogle Scholar
  11. 11.
    L. Wu, F. Li, Y. Xu, J.W. Zhang, D. Zhang, G. Li, H. Li, Appl. Catal. B 164, 217–224 (2015)CrossRefGoogle Scholar
  12. 12.
    Y. Xu, Y. Mo, J. Tian, P. Wang, H. Yu, J. Yu, Appl. Catal. B 181, 810–817 (2016)CrossRefGoogle Scholar
  13. 13.
    X. Wang, Z. Li, W. Xu, S.A. Kulkarni, S.K. Batabyal, S. Zhang, A. Cao, L.H. Wong, Nano Energy 11, 728–735 (2015)CrossRefGoogle Scholar
  14. 14.
    X. Liu, G. Dong, S. Li, G. Lu, Y. Bi, J. Am. Chem. Soc. 138, 2917–2920 (2016)CrossRefGoogle Scholar
  15. 15.
    M.M. Momeni, Y. Ghayeb, M. Davarzadeh, J. Electroanal. Chem. 739, 149–155 (2015)CrossRefGoogle Scholar
  16. 16.
    T. Boningari, P.R. Ettireddy, A. Somogyvari, Y. Liu, A. Vorontsov, C.A. McDonald, P.G. Smirniotis, J. Catal. 325, 145–155 (2015)CrossRefGoogle Scholar
  17. 17.
    J.R. Swierk, K.P. Regan, J. Jiang, G.W. Brudvig, C.A. Schmuttenmaer, ACS Energy Lett. 1, 603–606 (2016)CrossRefGoogle Scholar
  18. 18.
    M. Hassan, Y. Zhao, B. Xie, Chem. Eng. J. 285, 264–275 (2016)CrossRefGoogle Scholar
  19. 19.
    L. Zheng, S. Han, H. Liu, P. Yu, X. Fang, Small 12, 1527–1536 (2016)CrossRefGoogle Scholar
  20. 20.
    A.A. Ismail, I. Abdelfattah, A. Helal, S.A. Al-Sayari, L. Robben, D.W. Bahnemann, J. Hazard. Mater. 307, 43–54 (2016)CrossRefGoogle Scholar
  21. 21.
    J. Zhang, X. Jin, P.I. Morales-Guzman, X. Yu, H. Liu, H. Zhang, L. Razzari, J.P. Claverie, ACS Nano 10, 4496–4503 (2016)CrossRefGoogle Scholar
  22. 22.
    V. Villar, L. Barrio, A. Helmi, M.V.S. Annaland, F. Gallucci, J.L.G. Fierro, R.M. Navarro, Catal. Today 268, 95–102 (2016)CrossRefGoogle Scholar
  23. 23.
    M. Setvin, U. Aschauer, J. Hulva, T. Simschitz, B. Daniel, M. Schmid, A. Selloni, U. Diebold, J. Am. Chem. Soc. 138, 9565–9571 (2016)CrossRefGoogle Scholar
  24. 24.
    R. Kaplan, B. Erjavec, G. Dražić, J. Grdadolnik, A. Pintar, Appl. Catal. B 181, 465–474 (2016)CrossRefGoogle Scholar
  25. 25.
    E. Mosconi, G. Grancini, C. Roldán-Carmona, P. Gratia, I. Zimmermann, M.K. Nazeeruddin, F.D. Angelis, Chem. Mater. 28, 3612–3615 (2016)CrossRefGoogle Scholar
  26. 26.
    X. Hua, Z. Liu, M.G. Fischer, O. Borkiewicz, P.J. Chupas, K.W. Chapman, U. Steiner, P.G. Bruce, C.P. Grey, J. Am. Chem. Soc. 139, 13330–13341 (2017)CrossRefGoogle Scholar
  27. 27.
    S. Weon, W. Choi, Environ. Sci. Technol. 50, 2556–2563 (2016)CrossRefGoogle Scholar
  28. 28.
    D. Lambropoulou, E. Evgenidou, V. Saliverou, C. Kosma, I. Konstantinou, J. Hazard. Mater. 323, 513–526 (2017)CrossRefGoogle Scholar
  29. 29.
    H. Shi, Y. He, Y. Pan, H. Di, G. Zeng, L. Zhang, C. Zhang, J. Membr. Sci. 506, 60–70 (2016)CrossRefGoogle Scholar
  30. 30.
    D. Xu, Y. Hai, X. Zhang, S. Zhang, R. He, Appl. Surf. Sci. 400, 530–536 (2017)CrossRefGoogle Scholar
  31. 31.
    W. Ke, C.C. Stoumpos, J.L. Logsdon, M.R. Wasielewski, Y. Yan, G. Fang, M.G. Kanatzidis, J. Am. Chem. Soc. 138, 14998–15003 (2016)CrossRefGoogle Scholar
  32. 32.
    J. Yan, H. Wu, H. Chen, Y. Zhang, F. Zhang, S.F. Liu, Appl. Catal. B 191, 130–137 (2016)CrossRefGoogle Scholar
  33. 33.
    L. Qi, B. Cheng, J. Yu, W. Ho, J. Hazard. Mater. 301, 522–530 (2016)CrossRefGoogle Scholar
  34. 34.
    L. Elsellami, F. Dappozze, A. Houas, C. Guillard, Mater. Lett. 204, 188–191 (2017)CrossRefGoogle Scholar
  35. 35.
    K. Mori, K. Miyawaki, H. Yamashita, ACS Catal. 6, 3128–3135 (2016)CrossRefGoogle Scholar
  36. 36.
    A.V. Vorontsov, S.V. Tsybulya, Ind. Eng. Chem. Res. 57, 2526–2536 (2018)CrossRefGoogle Scholar
  37. 37.
    K. Lv, S. Fang, L. Si, Y. Xia, W. Ho, M. Li, Appl. Surf. Sci. 391, 218–227 (2017)CrossRefGoogle Scholar
  38. 38.
    R.C. Costa, A.D. Rodrigues, T.R. Cunha, J.W.M. Espinosa, P.S. Pizani, Ceram. Int. 43, 116–120 (2017)CrossRefGoogle Scholar
  39. 39.
    H.R. Kim, A. Razzaq, C.A. Grimes, S. In, J. CO2 Util. 20, 91–96 (2017)CrossRefGoogle Scholar
  40. 40.
    X. Xia, H. Liu, D. Yu, Y. Bao, Y. Gao, Sci. Adv. Mater. 9, 555–561 (2017)CrossRefGoogle Scholar
  41. 41.
    Y. Sui, S. Liu, T. Li, Q. Liu, T. Jiang, Y. Guo, J. Luo, J. Catal. 353, 250–255 (2017)CrossRefGoogle Scholar
  42. 42.
    Y. Duan, M. Zhang, L. Wang, F. Wang, L. Yang, X. Li, C. Wang, Appl. Catal. B 204, 67–77 (2017)CrossRefGoogle Scholar
  43. 43.
    A.K. Tonni, Y. Lin, O. Tong, B.A. Ahmad, W. Gavin, Mater. Sci. Semicond. Process. 73, 42–50 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Xishun Jiang
    • 1
    • 2
  • Shaokang Zheng
    • 1
  • Yonghua Shi
    • 1
  • Zhaoqi Sun
    • 1
  • Yuxia Zhao
    • 3
    Email author
  1. 1.School of Mechanical and Electronic EngineeringChuzhou UniversityChuzhouChina
  2. 2.State Key Laboratory of Metastable Materials Science and TechnologyYanshan UniversityQinhuangdaoChina
  3. 3.Technician CollegeChuzhou Vocational and Technical CollegeChuzhouChina

Personalised recommendations