Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 17, pp 14827–14834 | Cite as

Combined experimental and theoretical investigation of l-Histidinium trichloro zinc: a novel nonlinear optical material

  • Radhakrishnan Anbarasan
  • Muppudathi Anna Lakshmi
  • Jeyaperumal Kalyana Sundar
Article
  • 34 Downloads

Abstract

The l-Histidine based first metal organic NLO crystal, l-Histidinium trichloro zinc (HZC) is successfully grown from slow evaporation method. The experimental and theoretical investigations performed exploitation in the field of nonlinear optics. Single crystal X-ray diffraction study confirms the crystal belongs to orthorhombic system with the space group P212121. The crystal has wide optical transmission window from 302 to 1000 nm. TGA/DSC shows the compound has high melting point (200 °C) away its family. Optimized molecular geometry, molecular orbital analysis and hyperpolarizability calculations are carried out using density functional theory. The energy gap of HOMO–LUMO expresses the intramolecular charge transfers in the molecule. Hirshfeld surface analysis exposes that H‧‧‧Cl and Cl‧‧‧H are the strongest hydrogen bond interactions. Theoretical calculation implies that first-order polarizability is 8 times greater than urea. The results revealed that the HZC may useful for optoelectronic applications.

References

  1. 1.
    D.J. Williams, Nonlinear Optical Effects in Molecules and Polymers, (Wiley, Hoboken, 1987)Google Scholar
  2. 2.
    D.S. Chemla, J. Zyss, Nonlinear Optical Properties of Organic Molecules and Crystals, Vol. 1 (Academic Press, Cambridge, 1987)Google Scholar
  3. 3.
    M. Jiang, Q. Fang, Adv. Mater. 11, 1147 (1999)CrossRefGoogle Scholar
  4. 4.
    S. Aruna, G. Bhagavannarayana, P. Sagayaraj, J. Cryst. Growth 304, 184 (2007)CrossRefGoogle Scholar
  5. 5.
    S.A.M.B. Dhas, J. Suresh, G. Bhagavannarayana, S. Natarajan, Open Crystallogr. J. 1, 46 (2008)CrossRefGoogle Scholar
  6. 6.
    A. Zamara, K. Rajesh, A. Thirugnanam, P.P. Kumar, Opt. Int. J. Light Electron Opt. 125, 6082 (2014)CrossRefGoogle Scholar
  7. 7.
    B. Dhanalakshmi, S. Ponnusamy, C. Muthamizhchelvan, J. Cryst. Growth 313, 30 (2010)CrossRefGoogle Scholar
  8. 8.
    H. Arul, D.R. Babu, R. Ezhil, Vizhi, G. Bhagavannarayana, J. Cryst. Growth 423, 22 (2015)CrossRefGoogle Scholar
  9. 9.
    P. Anandan, R. Jayavel, T. Saravanan, G. Parthipan, C. Vedhi, R. Mohan, Kumar, Opt. Mater. 34, 1225 (2012)CrossRefGoogle Scholar
  10. 10.
    K. Ramya, N.T. Saraswathi, C.R. Raja, Opt. Laser Technol. 84, 102 (2016)CrossRefGoogle Scholar
  11. 11.
    K.V. Rajendran, D. Jayaraman, R. Jayavel, P. Ramasamy, J. Cryst. Growth 255, 361 (2003)CrossRefGoogle Scholar
  12. 12.
    M. Förster, R. Burth, A.K. Powell, T. Eiche, H. Vahrenkamp, Chem. Ber. 126, 2643 (1993)CrossRefGoogle Scholar
  13. 13.
    W.J. Hehre, L. Radom, P.V. Schleyer, J.A. Pople, Ab Initio Molecular Orbital Theory, (Wiley, New York, 1986) p 548Google Scholar
  14. 14.
    M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, D.J. Fox, Gaussian 09, Rev A.02, (Gaussian, Inc., Wallingford, 2010)Google Scholar
  15. 15.
    S.K. Wolff, D.J. Grimwood, J.J. McKinnon, M.J. Turner, D. Jayatilaka, M.A. Spackman, University of Western Australia, Perth (2012)Google Scholar
  16. 16.
    A. Frisch, A.B. Nielson, A.J. Holder, Gaussview Users Manual, (Gaussian Inc. Pittsburgh, 2000)Google Scholar
  17. 17.
    F. Peral, E. Gallego, J. Mol. Struct. 415, 187 (1997)CrossRefGoogle Scholar
  18. 18.
    S. Panchapakesan, K. Subramani, B. Srinivasan, J. Mater. Sci. 28, 5754 (2017)Google Scholar
  19. 19.
    K. SambathKumar, S. Nithiyanantham, J. Mater. Sci. 28, 6529 (2017)Google Scholar
  20. 20.
    D. Prabha, R. Karunathan, V. Sathyanarayanamoorthi, J. Mater. Sci. 28, 9675 (2017)Google Scholar
  21. 21.
    P.K. Devi, K. Venkatachalam, J. Mater. Sci. 27, 8590 (2016)Google Scholar
  22. 22.
    J. Hu, Z. Ma, R. Sa, Y. Zhang, K. Wu, Dalton Trans. 46, 2635 (2017)CrossRefGoogle Scholar
  23. 23.
    M.A. Spackman, D. Jayatilaka, CrystEngComm 11, 19 (2009)CrossRefGoogle Scholar
  24. 24.
    J.J.M.M.A. Spackman, CrystEngComm 4, 378 (2002)CrossRefGoogle Scholar
  25. 25.
    S.K. Kurtz, T.T. Perry, J. Appl. Phys. 39, 3798 (1968)CrossRefGoogle Scholar
  26. 26.
    B. Babu, J. Chandrasekaran, R. Thirumurugan, V. Jayaramakrishnan, K. Anitha, J. Mater. Sci. 28, 1124 (2017)Google Scholar
  27. 27.
    V. Siva, S.S. Kumar, A. Shameem, M. Raja, S. Athimoolam, S.A. Bahadur, J. Mater. Sci. 28, 12484 (2017)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Radhakrishnan Anbarasan
    • 1
  • Muppudathi Anna Lakshmi
    • 2
  • Jeyaperumal Kalyana Sundar
    • 1
  1. 1.Materials Science Laboratory, Department of PhysicsPeriyar UniversitySalemIndia
  2. 2.Department of PhysicsERK College of Arts and ScienceDharmapuriIndia

Personalised recommendations