Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 17, pp 14813–14826 | Cite as

Free-standing and binder-free electrochemical capacitor electrode based on hierarchical microfibrous carbon–graphene–Mn3O4 nanocomposites materials

  • Zineb Nabti
  • Tarik BordjibaEmail author
  • Sujittra Poorahong
  • Amel Boudjemaa
  • Ali Benayahoum
  • Mohamed Siaj
  • Khaldoun Bachari


Hierarchical microfibers carbon–graphene–Mn3O4 (MFC–G–Mn3O4) nanocomposites have been successfully prepared via a simple, effective, and scalable chemical deposition method. It was applied as a free-standing and binder-free electrodes for an electrochemical capacitor. The graphene was first synthesized by electrochemical exfoliation of graphite rods and deposited on the microfibers carbon using gradually drop of the temperature until 150 °C to form MFC–G electrode. Then the Mn3O4 was prepared by direct redox depositions on MFC–G substrate at the temperature of 150 °C to form MFC–G–Mn3O4. For comparison purposes, the Mn3O4 was deposited directly on MFC to form MFC–Mn3O4 electrode under similar conditions. The synthesized materials were characterized by using scanning electronic microscopy, X-ray diffraction, Raman spectroscopy, cyclic voltammetry, galvanostatic charge–discharge (GCD) and electrochemical impedance spectroscopy techniques. The results from different characterization techniques indicate that the graphene and Mn3O4 were successfully synthesized and deposited on substrates. The specific capacitance of the electrode MFC–G–Mn3O4 reached 414 F g−1, this is five times greater than that obtained capacitance from the electrode MFC–Mn3O4 which is 83 F g−1. In addition, the introduction of graphene in the matrix of Mn3O4 allows an improvement of contact resistance between the active material and the current collector, electronic conductivity of the electrode, and stability over GCD cycling. The specific capacitance of the MFC–G–Mn3O4 is one of the highest values recorded in the literature of Mn3O4 based materials. Combination of the graphene and Mn3O4 using the direct deposition resulted in efficient synergetic effect between the two materials. The facile synthesis techniques and the good capacitive performances indicate that the developed nanocomposite electrode would be promising as electrode materials for the high-performance electrochemical capacitor.


  1. 1.
    P. Simon, Y. Gogotsi, Materials for electrochemical capacitors. Nat. Mater. 7, 845–854 (2008)CrossRefGoogle Scholar
  2. 2.
    T. Brousse et al., Springer Handbook of Electrochemical Energy (Springer, Heidelberg, 2017), pp. 495–561CrossRefGoogle Scholar
  3. 3.
    B.E. Conway, Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications (Springer, New York, 2013)Google Scholar
  4. 4.
    T. Bordjiba, M. Mohamedi, L.H. Dao, New class of carbon-nanotube aerogel electrodes for electrochemical power sources. Adv. Mater. 20, 815–819 (2008)CrossRefGoogle Scholar
  5. 5.
    F. Chi et al., Graphene based organic electrochemical capacitors for ac line filtering. Adv. Energy Mater. (2017). Google Scholar
  6. 6.
    A.J. Gibson, K.G. Latham, R.C. Burns, S.W. Donne, Electrodeposition mechanism of cathodically-prepared manganese dioxide thin films from permanganate for use in electrochemical capacitors. Electrochim. Acta 236, 198–211 (2017)CrossRefGoogle Scholar
  7. 7.
    Z. Fan et al., Asymmetric supercapacitors based on graphene/MnO2 and activated carbon nanofiber electrodes with high power and energy density. Adv. Funct. Mater. 21, 2366–2375 (2011)CrossRefGoogle Scholar
  8. 8.
    M. Sawangphruk et al., High-performance supercapacitor of manganese oxide/reduced graphene oxide nanocomposite coated on flexible carbon fiber paper. Carbon 60, 109–116 (2013)CrossRefGoogle Scholar
  9. 9.
    G. Yu et al., Enhancing the supercapacitor performance of graphene/MnO2 nanostructured electrodes by conductive wrapping. Nano Lett. 11, 4438–4442 (2011)CrossRefGoogle Scholar
  10. 10.
    R. Kötz, M. Carlen, Principles and applications of electrochemical capacitors. Electrochim. Acta 45, 2483–2498 (2000)CrossRefGoogle Scholar
  11. 11.
    T. Bordjiba, M. Mohamedi, Molding versus dispersion: effect of the preparation procedure on the capacitive and cycle life of carbon nanotubes aerogel composites. J. Solid State Electrochem. 15, 765–771 (2010)CrossRefGoogle Scholar
  12. 12.
    S. Shivakumara, N. Munichandraiah, Asymmetric supercapacitor based on nanostructured porous manganese oxide and reduced graphene oxide in aqueous neutral electrolyte. Solid State Commun. 260, 34–39 (2017)CrossRefGoogle Scholar
  13. 13.
    T. Bordjiba, M. Mohamedi, L.H. Dao, Novel binderless nanostructured carbon nanotubes-carbon aerogel composites for electrochemical double layer capacitors. ECS Trans. 6, 183–189 (2008)CrossRefGoogle Scholar
  14. 14.
    W. He et al., Flexible and high energy density asymmetrical supercapacitors based on core/shell conducting polymer nanowires/manganese dioxide nanoflakes. Nano Energy 35, 242–250 (2017)CrossRefGoogle Scholar
  15. 15.
    C.O. Baker, X. Huang, W. Nelson, R.B. Kaner, Polyaniline nanofibers: broadening applications for conducting polymers. Chem. Soc. Rev. 46, 1510–1525 (2017)CrossRefGoogle Scholar
  16. 16.
    M. Tebyetekerwa et al., Unveiling polyindole: freestanding as-electrospun polyindole nanofibers and polyindole/carbon nanotubes composites as enhanced electrodes for flexible all-solid-state supercapacitors. Electrochim. Acta 247, 400–409 (2017)CrossRefGoogle Scholar
  17. 17.
    J. Xian et al., Carbon-based electrode materials for supercapacitor: progress, challenges and prospective solutions. J. Electrical Eng. 4, 75–87 (2016)Google Scholar
  18. 18.
    Y. Guetteche, Development of composite material based on porous microfibrous carbon and zinc oxide for energy storage application. Int. J. Electrochem. Sci. 12, 1874–1884 (2017)CrossRefGoogle Scholar
  19. 19.
    B.Y. Guan et al., Coordination polymers derived general synthesis of multishelled mixed metal-oxide particles for hybrid supercapacitors. Adv. Mater. (2017). Google Scholar
  20. 20.
    J.-J. Jhao et al., The coaxial nanostructure of ruthenium oxide thin films coated onto the vertically grown graphitic nanofibers for electrochemical supercapacitor. Surf. Coat. Technol. 320, 263–269 (2017)CrossRefGoogle Scholar
  21. 21.
    T. Bordjiba, D. Bélanger, Direct redox deposition of manganese oxide on multiscaled carbon nanotube/microfiber carbon electrode for electrochemical capacitor. J. Electrochem. Soc. (2009). Google Scholar
  22. 22.
    T. Bordjiba, D. Bélanger, Development of new nanocomposite based on nanosized-manganese oxide and carbon nanotubes for high performance electrochemical capacitors. Electrochim. Acta 55, 3428–3433 (2010)CrossRefGoogle Scholar
  23. 23.
    G. Nagaraju, R. Kakarla, S.M. Cha, J.S. Yu, Highly flexible conductive fabrics with hierarchically nanostructured amorphous nickel tungsten tetraoxide for enhanced electrochemical energy storage. Nano Res. 8, 3749–3763 (2015)CrossRefGoogle Scholar
  24. 24.
    A.V. Thakur, B.J. Lokhande, Effect of dip time on the electrochemical behavior of PPy-Cu(OH)2 hybrid electrodes synthesized using pyrrole and CuSO4. e-Polymers 17, 167–173 (2017)CrossRefGoogle Scholar
  25. 25.
    A. Thakur, B. Lokhande, Dip time-dependent SILAR synthesis and electrochemical study of highly flexible PPy-Cu(OH)2 hybrid electrodes for supercapacitors. J. Solid State Electrochem. 21, 2577–2584 (2017)CrossRefGoogle Scholar
  26. 26.
    A. Thakur, B. Lokhande, C10H8N2-PPy hybrid flexible electrodes: SILAR synthesis and electrochemical study. J. Mater. Sci.: Mater. Electron. 29, 1630–1635 (2018)Google Scholar
  27. 27.
    S. Ghasemi, R. Hosseinzadeh, M. Jafari, MnO2 nanoparticles decorated on electrophoretically deposited graphene nanosheets for high performance supercapacitor. Int. J. Hydrog. Energy 40, 1037–1046 (2015)CrossRefGoogle Scholar
  28. 28.
    R. Ingole, B. Lokhande, Nanoporous vanadium oxide network prepared by spray pyrolysis. Mater. Lett. 168, 95–98 (2016)CrossRefGoogle Scholar
  29. 29.
    A.V. Thakur, B.J. Lokhande, Source molarity affected surface morphological and electrochemical transitions in binder-free FeO(OH) flexible electrodes and fabrication of symmetric supercapacitive device. Chem. Pap. 72, 1407–1415 (2018)CrossRefGoogle Scholar
  30. 30.
    A. Thakur, B. Lokhande, Electrolytic anion affected charge storage mechanisms of Fe3O4 flexible thin film electrode in KCl and KOH: a comparative study by cyclic voltammetry and galvanostatic charge–discharge. J. Mater. Sci.: Mater. Electron. 28, 11755–11761 (2017)Google Scholar
  31. 31.
    H.W. Chang et al., Electrochemical and in situ X-ray spectroscopic studies of MnO2/reduced graphene oxide nanocomposites as a supercapacitor. Phys. Chem. Chem. Phys. 18, 18705–18718 (2016)CrossRefGoogle Scholar
  32. 32.
    H. Chen, S. Zhou, L. Wu, Porous nickel hydroxide-manganese dioxide-reduced graphene oxide ternary hybrid spheres as excellent supercapacitor electrode materials. ACS Appl. Mater. Interfaces 6, 8621–8630 (2014)CrossRefGoogle Scholar
  33. 33.
    R. Ambare, S. Bharadwaj, B. Lokhande, Electrochemical characterization of Mn:Co3O4 thin films prepared by spray pyrolysis via aqueous route. Curr. Appl. Phys. 14, 1582–1590 (2014)CrossRefGoogle Scholar
  34. 34.
    R. Ambare, S. Bharadwaj, B. Lokhande, Spray pyrolysed Mn:Co3O4 thin film electrodes via non-aqueous route and their electrochemical parameter measurements. Measurement 88, 66–76 (2016)CrossRefGoogle Scholar
  35. 35.
    Q. Cheng et al., Graphene and nanostructured MnO2 composite electrodes for supercapacitors. Carbon 49, 2917–2925 (2011)CrossRefGoogle Scholar
  36. 36.
    H.-M. Lee, G.H. Jeong, D.W. Kang, S.-W. Kim, C.-K. Kim, Direct and environmentally benign synthesis of manganese oxide/graphene composites from graphite for electrochemical capacitors. J. Power Sources 281, 44–48 (2015)CrossRefGoogle Scholar
  37. 37.
    Z.-S. Wu et al., High-energy MnO2 nanowire/graphene and graphene asymmetric electrochemical capacitors. ACS Nano 4, 5835–5842 (2010)CrossRefGoogle Scholar
  38. 38.
    M. Toupin, T. Brousse, D. Bélanger, Charge storage mechanism of MnO2 electrode used in aqueous electrochemical capacitor. Chem. Mater. 16, 3184–3190 (2004)CrossRefGoogle Scholar
  39. 39.
    T.-H. Wu et al., Charge storage mechanism of activated manganese oxide composites for pseudocapacitors. J. Mater. Chem. A 3, 12786–12795 (2015)CrossRefGoogle Scholar
  40. 40.
    W. Wei, X. Cui, W. Chen, D.G. Ivey, Manganese oxide-based materials as electrochemical supercapacitor electrodes. Chem. Soc. Rev. 40, 1697–1721 (2011)CrossRefGoogle Scholar
  41. 41.
    K.S. Novoselov et al., Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004)CrossRefGoogle Scholar
  42. 42.
    A.K. Geim, K.S. Novoselov, The rise of graphene. Nat. Mater. 6, 183 (2007)CrossRefGoogle Scholar
  43. 43.
    D.A. Brownson, C.E. Banks, CVD graphene electrochemistry: the role of graphitic islands. Phys. Chem. Chem. Phys. 13, 15825–15828 (2011)CrossRefGoogle Scholar
  44. 44.
    M.D. Stoller, S. Park, Y. Zhu, J. An, R.S. Ruoff, Graphene-based ultracapacitors. Nano Lett. 8, 3498–3502 (2008)CrossRefGoogle Scholar
  45. 45.
    C. Lee, X. Wei, J.W. Kysar, J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385–388 (2008)CrossRefGoogle Scholar
  46. 46.
    Q. Chen et al., MnO2-modified hierarchical graphene fiber electrochemical supercapacitor. J. Power Sources 247, 32–39 (2014)CrossRefGoogle Scholar
  47. 47.
    J. Deng, X. Wang, X. Duan, P. Liu, Facile preparation of MnO2/graphene nanocomposites with spent battery powder for electrochemical energy storage. ACS Sustain. Chem. Eng. 3, 1330–1338 (2015)CrossRefGoogle Scholar
  48. 48.
    H. Lee, J. Kang, M.S. Cho, J.-B. Choi, Y. Lee, MnO2/graphene composite electrodes for supercapacitors: the effect of graphene intercalation on capacitance. J. Mater. Chem. 21, (2011).
  49. 49.
    S.-W. Lee et al., Structural changes in reduced graphene oxide upon MnO2 deposition by the redox reaction between carbon and permanganate ions. J. Phys. Chem. C 118, 2834–2843 (2014)CrossRefGoogle Scholar
  50. 50.
    Y. Li et al., Hydrothermal deposition of manganese dioxide nanosheets on electrodeposited graphene covered nickel foam as a high-performance electrode for supercapacitors. J. Power Sources 279, 138–145 (2015)CrossRefGoogle Scholar
  51. 51.
    M. Ramezani, M. Fathi, F. Mahboubi, Facile synthesis of ternary MnO2/graphene nanosheets/carbon nanotubes composites with high rate capability for supercapacitor applications. Electrochim. Acta 174, 345–355 (2015)CrossRefGoogle Scholar
  52. 52.
    A. Sumboja, C.Y. Foo, X. Wang, P.S. Lee, Large areal mass, flexible and free-standing reduced graphene oxide/manganese dioxide paper for asymmetric supercapacitor device. Adv. Mater. 25, 2809–2815 (2013)CrossRefGoogle Scholar
  53. 53.
    C. Xiong et al., Two-step approach of fabrication of three-dimensional MnO2-graphene-carbon nanotube hybrid as a binder-free supercapacitor electrode. J. Power Sources 306, 602–610 (2016)CrossRefGoogle Scholar
  54. 54.
    M. Yang, B.G. Choi, Rapid one-step synthesis of conductive and porous MnO2/graphene nanocomposite for high performance supercapacitors. J. Electroanal. Chem. 776, 134–138 (2016)CrossRefGoogle Scholar
  55. 55.
    Z. Zhang et al., Facile synthesis of 3D MnO2-graphene and carbon nanotube-graphene composite networks for high-performance, flexible, all-solid-state asymmetric supercapacitors. Adv. Energy Mater. (2014). Google Scholar
  56. 56.
    Y. Zhao, M.P. Li, S. Liu, M.F. Islam, Superelastic pseudocapacitors from freestanding MnO2-decorated graphene-coated carbon nanotube aerogels. ACS Appl. Mater. Interfaces 9, 23810–23819 (2017)CrossRefGoogle Scholar
  57. 57.
    Y. Zheng, W. Pann, D. Zhengn, C. Sun, Fabrication of functionalized graphene-based MnO2 nanoflower through electrodeposition for high-performance supercapacitor electrodes. J. Electrochem. Soc. 163, D230–D238 (2016)CrossRefGoogle Scholar
  58. 58.
    H. Zhou, H.-J. Zhai, Rapid preparation of the hybrid of MnO2 dispersed on graphene nanosheets with enhanced supercapacitive performance. Electrochim. Acta 215, 339–345 (2016)CrossRefGoogle Scholar
  59. 59.
    G. Zhu et al., Highly conductive three-dimensional MnO2-carbon nanotube-graphene-Ni hybrid foam as a binder-free supercapacitor electrode. Nanoscale 6, 1079–1085 (2014)CrossRefGoogle Scholar
  60. 60.
    X. Zhu, P. Zhang, S. Xu, X. Yan, Q. Xue, Free-standing three-dimensional graphene/manganese oxide hybrids as binder-free electrode materials for energy storage applications. ACS Appl. Mater. Interfaces 6, 11665–11674 (2014)CrossRefGoogle Scholar
  61. 61.
    B.G.S. Raj, R.N.R. Ramprasad, A.M. Asiri, J.J. Wu, S. Anandan, Ultrasound assisted synthesis of Mn3O4 nanoparticles anchored graphene nanosheets for supercapacitor applications. Electrochim. Acta 156, 127–137 (2015)CrossRefGoogle Scholar
  62. 62.
    K. Subramani, D. Jeyakumar, M. Sathish, Manganese hexacyanoferrate derived Mn3O4 nanocubes-reduced graphene oxide nanocomposites and their charge storage characteristics in supercapacitors. Phys. Chem. Chem. Phys. 16, 4952–4961 (2014)CrossRefGoogle Scholar
  63. 63.
    T. Xiong, W.S.V. Lee, X. Huang, J.M. Xue, Mn3O4/reduced graphene oxide based supercapacitor with ultra-long cycling performance. J. Mater. Chem. A 5, 12762–12768 (2017)CrossRefGoogle Scholar
  64. 64.
    J. Chen et al., Synthesis of Mn3O4/N-doped graphene hybrid and its improved electrochemical performance for lithium-ion batteries. Ceram. Int. 43, 4655–4662 (2017)CrossRefGoogle Scholar
  65. 65.
    J.W. Lee, A.S. Hall, J.-D. Kim, T.E. Mallouk, A facile and template-free hydrothermal synthesis of Mn3O4 nanorods on graphene sheets for supercapacitor electrodes with long cycle stability. Chem. Mater. 24, 1158–1164 (2012)CrossRefGoogle Scholar
  66. 66.
    X. Zhang, X. Sun, Y. Chen, D. Zhang, Y. Ma, One-step solvothermal synthesis of graphene/Mn3O4 nanocomposites and their electrochemical properties for supercapacitors. Mater. Lett. 68, 336–339 (2012)CrossRefGoogle Scholar
  67. 67.
    X. Zhang et al., Room temperature synthesis of Mn3O4 nanoparticles: characterization, electrochemical properties and hydrothermal transformation to γ-MnO2 nanorods. Mater. Lett. 92, 401–404 (2013)CrossRefGoogle Scholar
  68. 68.
    Z. Qi, A. Younis, D. Chu, S. Li, A facile, and template-free one-pot synthesis of Mn3O4 nanostructures as electrochemical supercapacitors. Nano-Micro Lett. 8, 165–173 (2016)CrossRefGoogle Scholar
  69. 69.
    K. Parvez et al., Exfoliation of graphite into graphene in aqueous solutions of inorganic salts. J. Am. Chem. Soc. 136, 6083–6091 (2014)CrossRefGoogle Scholar
  70. 70.
    M. Wu, G.A. Snook, G.Z. Chen, D.J. Fray, Redox deposition of manganese oxide on graphite for supercapacitors. Electrochem. Commun. 6, 499–504 (2004)CrossRefGoogle Scholar
  71. 71.
    Y. Qian, S. Lu, F. Gao, Preparation of MnO2/graphene composite as electrode material for supercapacitors. J. Mater. Sci. 46, 3517–3522 (2011)CrossRefGoogle Scholar
  72. 72.
    C.-T. Hsieh, D.-Y. Tzou, W.-Y. Lee, J.-P. Hsu, Deposition of MnO2 nanoneedles on carbon nanotubes and graphene nanosheets as electrode materials for electrochemical capacitors. J. Alloys Compd. 660, 99–107 (2016)CrossRefGoogle Scholar
  73. 73.
    Z.Q. Li, C.J. Lu, Z.P. Xia, Y. Zhou, Z. Luo, X-ray diffraction patterns of graphite and turbostratic carbon. Carbon 45, 1686–1695 (2007)CrossRefGoogle Scholar
  74. 74.
    L. Deng et al., Preparation and capacitance of graphene/multiwall carbon nanotubes/MnO2 hybrid material for high-performance asymmetrical electrochemical capacitor. Electrochim. Acta 89, 191–198 (2013)CrossRefGoogle Scholar
  75. 75.
    B. Gnana Sundara Raj, A.M. Asiri, J.J. Wu, S. Anandan, Synthesis of Mn3O4 nanoparticles via chemical precipitation approach for supercapacitor application. J. Alloys Compd. 636, 234–240 (2015)CrossRefGoogle Scholar
  76. 76.
    R. Boddula, R. Bolagam, P. Srinivasan, Incorporation of graphene-Mn3O4 core into polyaniline shell: supercapacitor electrode material. Ionics (2017). Google Scholar
  77. 77.
    L.-L. Wu et al., Nanorod Mn3O4 anchored on graphene nanosheet as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance. J. Alloys Compd. 728, 383–390 (2017)CrossRefGoogle Scholar
  78. 78.
    J.-G. Wang et al., Highly flexible graphene/Mn3O4 nanocomposite membrane as advanced anodes for Li-ion batteries. ACS Nano 10, 6227–6234 (2016)CrossRefGoogle Scholar
  79. 79.
    A.C. Ferrari et al., Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97, 187401 (2006)CrossRefGoogle Scholar
  80. 80.
    A.C. Ferrari, Raman spectroscopy of graphene and graphite: disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Commun. 143, 47–57 (2007)CrossRefGoogle Scholar
  81. 81.
    D. Graf et al., Spatially resolved raman spectroscopy of single- and few-layer graphene. Nano Lett. 7, 238–242 (2007)CrossRefGoogle Scholar
  82. 82.
    M.S. Dresselhaus, A. Jorio, M. Hofmann, G. Dresselhaus, R. Saito, Perspectives on carbon nanotubes and graphene raman spectroscopy. Nano Lett. 10, 751–758 (2010)CrossRefGoogle Scholar
  83. 83.
    M.C. Bernard, A. Hugot-Le Goff, B.V. Thi, S.C. de Torresi, Electrochromic reactions in manganese oxides I. Raman analysis. J. Electrochem. Soc. 140, 3065–3070 (1993)CrossRefGoogle Scholar
  84. 84.
    C. Julien, M. Massot, C. Poinsignon, Lattice vibrations of manganese oxides: part I. periodic structures. Spectrochim. Acta A 60, 689–700 (2004)CrossRefGoogle Scholar
  85. 85.
    L.-X. Yang, Y.-J. Zhu, H. Tong, W.-W. Wang, G.-F. Cheng, Low temperature synthesis of Mn3O4 polyhedral nanocrystals and magnetic study. J. Solid State Chem. 179, 1225–1229 (2006)CrossRefGoogle Scholar
  86. 86.
    D. Yan et al., Three-dimensional reduced graphene oxide–Mn3O4 nanosheet hybrid decorated with palladium nanoparticles for highly efficient hydrogen evolution. Int. J. Hydrog. Energy (2017). Google Scholar
  87. 87.
    Y.F. Liu, G.H. Yuan, Z.H. Jiang, Z.P. Yao, Solvothermal synthesis of mn3o4nanoparticle/graphene sheet composites and their supercapacitive properties. J. Nanomater. 2014, 1–11 (2014)Google Scholar
  88. 88.
    T. Bordjiba, M. Mohamedi, L.H. Dao, Charge storage mechanism of binderless nanocomposite electrodes formed by dispersion of CNTs and carbon aerogels. J. Electrochem. Soc. (2008). Google Scholar
  89. 89.
    B. Wang, J. Park, C. Wang, H. Ahn, G. Wang, Mn3O4 nanoparticles embedded into graphene nanosheets: Preparation, characterization, and electrochemical properties for supercapacitors. Electrochim. Acta 55, 6812–6817 (2010)CrossRefGoogle Scholar
  90. 90.
    D. Wang, Y. Li, Q. Wang, T. Wang, Facile synthesis of porous Mn3O4 nano­crystal–graphene nanocomposites for electrochemical supercapacitors. Eur. J. Inorg. Chem. 2012, 628–635 (2012)CrossRefGoogle Scholar
  91. 91.
    Y. Fan, X. Zhang, Y. Liu, Q. Cai, J. Zhang, One-pot hydrothermal synthesis of Mn3O4/graphene nanocomposite for supercapacitors. Mater. Lett. 95, 153–156 (2013)CrossRefGoogle Scholar
  92. 92.
    W. Chen, L. Yan, P.R. Bangal, Preparation of graphene by the rapid and mild thermal reduction of graphene oxide induced by microwaves. Carbon 48, 1146–1152 (2010)CrossRefGoogle Scholar
  93. 93.
    L. Li et al., Hydrothermal self-assembly synthesis of Mn3O4/reduced graphene oxide hydrogel and its high electrochemical performance for supercapacitors. Chin. J. Chem. 31, 1290–1298 (2013)CrossRefGoogle Scholar
  94. 94.
    G. Jin et al., Strongly coupled graphene/Mn3O4 composite with enhanced electrochemical performance for supercapacitor electrode. Electrochim. Acta 178, 689–698 (2015)CrossRefGoogle Scholar
  95. 95.
    J. Xu et al., A highly atom-efficient strategy to synthesize reduced graphene oxide-Mn3O4 nanoparticles composites for supercapacitors. J. Alloys Compd. 685, 949–956 (2016)CrossRefGoogle Scholar
  96. 96.
    S. Yang, X. Song, P. Zhang, L. Gao, Crumpled nitrogen-doped graphene–ultrafine Mn3O4 nanohybrids and their application in supercapacitors. J. Mater. Chem. A 1, 14162–14169 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Zineb Nabti
    • 1
    • 2
  • Tarik Bordjiba
    • 1
    • 2
    Email author
  • Sujittra Poorahong
    • 3
  • Amel Boudjemaa
    • 4
  • Ali Benayahoum
    • 4
  • Mohamed Siaj
    • 3
  • Khaldoun Bachari
    • 4
  1. 1.Laboratoire de Génie Electrique de Guelma (LGEG)Université 8 Mai 1945 GuelmaGuelmaAlgeria
  2. 2.Department of Process EngineeringUniversité 8 Mai 1945 GuelmaGuelmaAlgeria
  3. 3.Department of ChemistryUniversité du Québec à Montréal (UQAM)MontréalCanada
  4. 4.Center of Scientific and Technical Research in Physicochemical Analyzes (CRAPC)TipazaAlgeria

Personalised recommendations