Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 17, pp 14733–14745 | Cite as

Green synthesis of α-Fe2O3/BiPO4 composite and its biopolymeric beads for enhanced photocatalytic application

  • M. Nithya
  • Keerthi Praveen
  • S. Saral sessal
  • U. Sathya
  • N. Balasubramanian
  • A. Pandurangan
Article

Abstract

This study reports a green and facile hydrothermal method to synthesis α-Fe2O3/BiPO4 composite and was used for photocatalytic application under visible light irradiation. The synthesized samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV–Vis diffuse reflectance spectrum (UV–Vis DRS), Fourier transform infrared (FT-IR) spectrum, X-ray photoelectron spectroscopy (XPS), Brunauer–Emmet–Teller (BET) analysis and Photoluminescence (PL), which confirmed the formation of the composite. XRD analysis indicated that all the prepared samples present in pure hexagonal structure without Fe2O3 phases. The photocatalytic studies on methylene blue (MB) and ciprofloxacin (CIP) were evaluated under visible light irradiation and the α-Fe2O3/BiPO4 composite exhibited superior photocatalytic activity compared to the BiPO4. The results of PL studies substantiated that the enhancement of photocatalytic activity could be mainly attributed to the interaction of α-Fe2O3 and BiPO4 in the composite during photocatalysis which effectively improve electron–hole separation. The recyclability experiment corroborated the stability of α-Fe2O3/BiPO4 composite. Finally, the composite was converted into beads using calcium alginate, a non toxic biopolymer for easy separation of the catalyst from the reaction medium, which also showed equally good results.

Notes

Acknowledgements

This work was funded by Department of Science and Technology—Technology System Development (Project No. DST/TSG/NTS/2015/60-G) and the authors acknowledge the same. The first author acknowledges Anna University for the Anna Centenary Research Fellowship (ACRF).

References

  1. 1.
    O. Shan, M.R. Karthikeyan, Reduction of textile dye by using heterogeneous photocatalysis. Am. J. Environ. Prot. 3, 90–94 (2013)Google Scholar
  2. 2.
    L.L. Yuan, D.D. Huang, W.N. Guo, Q.X. Yang, J. Yu, TiO2/montmorillonite nanocomposite for removal of organic pollutant. Appl. Clay Sci. 53, 272–278 (2011)CrossRefGoogle Scholar
  3. 3.
    H. Fan, Y. Li, B. Liu, Y. Lu, T. Xie, D. Wang, Photoinduced charge transfer properties and photocatalytic activity in Bi2O3/BaTiO3 composite photocatalyst. ACS Appl. Mater. Interfaces 4, 4853–4857 (2012)CrossRefGoogle Scholar
  4. 4.
    H. Tong, S. Ouyang, Y. Bi, N. Umezawa, M. Oshikiri, J. Ye, Nano-photocatalytic materials: possibilities and challenges. Adv. Mater. 24, 229–251 (2012)CrossRefGoogle Scholar
  5. 5.
    C.C. Chen, W.H. Ma, J.C. Zhao, Semiconductor-mediated photodegradation of pollutants under visible-light irradiation. Chem. Soc. Rev. 39, 4206–4219 (2010)CrossRefGoogle Scholar
  6. 6.
    M.Y. Guo, M.K. Fung, F. Fang, X.Y. Chen, A.M.C. Ng, A.B. Djurisic, W.K. Chan, ZnO and TiO2 1D nanostructures for photocatalytic applications. J. Alloys Compd. 509, 1328–1332 (2011)CrossRefGoogle Scholar
  7. 7.
    M. Nolan, A. Iwaszuk, A.K. Lucid, J.J. Carey, M. Fronzi, Design of novel visible light active photocatalyst materials: surface modified TiO2. Adv. Mater. 28, 5425–5446 (2016)CrossRefGoogle Scholar
  8. 8.
    J. Zhang, Y.P. Zhang, Y.K. Lei, C.X. Pan, Photocatalytic and degradation mechanisms of anatase TiO2: a HRTEM study. Catal. Sci. Technol. 1, 273–278 (2011)CrossRefGoogle Scholar
  9. 9.
    C. Pan, Y. Zhu, New type of BiPO4 oxy-acid salt photocatalyst with high photocatalytic activity on degradation of dye. Environ. Sci. Technol. 44, 5570–5575 (2010)CrossRefGoogle Scholar
  10. 10.
    S.U. Khan, M. Al-Shahry, Efficient photochemical water splitting by a chemically modified n-TiO2. J. Sci. 297, 2243–2245 (2002)CrossRefGoogle Scholar
  11. 11.
    Z.G. Zou, J.H. Ye, K. Sayama, H. Arakawa, Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst. Nature 414, 625–627 (2001)CrossRefGoogle Scholar
  12. 12.
    J. Jiang, X. Zhang, P.B. Sun, L.Z. Zhang, ZnO/BiOI heterostructures: photoinduced charge-transfer property and enhanced visible-light photocatalytic activity. J. Phys. Chem. 115, 20555–20564 (2011)Google Scholar
  13. 13.
    S.S. Qian, C.S. Wang, W.J. Liu, Y.H. Zhu, W.J. Yao, X.H. Lu, An enhanced CdS/TiO2 photocatalyst with high stability and activity: effect of mesoporous substrate and bifunctional linking molecule. J. Mater. Chem. 21, 4945–4952 (2011)CrossRefGoogle Scholar
  14. 14.
    H. Lin, H. Ye, B. Xu, J. Cao, S. Chen, Ag3PO4 quantum dot sensitized BiPO4: a novel p–n junction Ag3PO4/BiPO4 with enhanced visible-light photocatalytic activity. Catal. Commun. 37, 55–59 (2013)CrossRefGoogle Scholar
  15. 15.
    F.F. Duo, Y.W. Wang, X.M. Mao, X.C. Zhang, Y.F. Wang, C.M. Fan, A BiPO4/BiOCl heterojunction photocatalyst with enhanced electron-hole separation and excellent photocatalytic performance. Appl. Surf. Sci. 340, 35–42 (2015)CrossRefGoogle Scholar
  16. 16.
    M. Lu, G. Yuan, Z. Wang, Y. Wang, J. Guo, Synthesis of BiPO4/Bi2S3 heterojunction with enhanced photocatalytic activity under visible-light irradiation. Nanoscale Res. Lett. 10, 385–391 (2015)CrossRefGoogle Scholar
  17. 17.
    J. Kang, Q. Kuang, Z.X. Xie, L.S. Zheng, Fabrication of the SnO2/α-Fe2O3 hierarchical heterostructure and its enhanced photocatalytic property. J. Phys. Chem. C 115, 7874–7879 (2011)CrossRefGoogle Scholar
  18. 18.
    A.Y. Murugan, T. Muraliganth, A. Manthiram, Rapid, facile microwave-solvothermal synthesis of graphene nanosheets and their polyaniline nanocomposites for energy strorage. Chem. Mater. 21, 5004–5006 (2009)CrossRefGoogle Scholar
  19. 19.
    Y.Q. Cong, Z. Li, Y. Zhang, Q. Wang, Q. Xu, Synthesis of α-Fe2O3/TiO2 nanotube arrays for photoelectro-Fenton degradation of phenol. Chem. Eng. J. 191, 356–363 (2012)CrossRefGoogle Scholar
  20. 20.
    W. Yan, H.Q. Fan, C. Yang, Ultra-fast synthesis and enhanced photocatalytic properties of alpha-Fe2O3/ZnO core-shell structure. Mater. Lett. 65, 1595–1597 (2011)CrossRefGoogle Scholar
  21. 21.
    X.W. Zhang, M.H. Zhou, L.C. Lei, Co-deposition of photocatalytic Fe doped TiO2 coatings by MOCVD. Catal. Commun. 7, 427–431 (2006)CrossRefGoogle Scholar
  22. 22.
    Y. Guo, G. Zhang, J. Liu, Y. Zhang, Hierarchically structured a-Fe2O3/Bi2WO6 composite for photocatalytic degradation of organic contaminants under visible light irradiation. RSC. Adv. 3, 2963–2970 (2013)CrossRefGoogle Scholar
  23. 23.
    N. Li, X. Hua, K. Wang, Y. Jin, J. Xu, M. Chen, F. Teng, In situ synthesis of uniform Fe2O3/BiOCl p/n heterojunctions and improved photodegradation properties for mixture dyes. Dalton Trans. 43, 13742–13750 (2014)CrossRefGoogle Scholar
  24. 24.
    S. Dutta, A.K. Patra, S. De, A. Bhaumik, B. Saha, Self-assembled TiO2 nanospheres by using a biopolymer as a template and its optoelectronic application. ACS Appl. Mater. Interfaces 4, 1560–1564 (2012)CrossRefGoogle Scholar
  25. 25.
    M.H. Farzana, S. Meenakshi, Photo-decolorization and detoxification of toxic dyes using titanium dioxide impregnated chitosan beads. Int. J. Biol. Macromol. 70, 420–426 (2014)CrossRefGoogle Scholar
  26. 26.
    S. De, S. Dutta, A.K. Patra, B.S. Rana, A.K. Sinha, B. Saha, A. Bhaumik, General biopolymer templated porous TiO2: an efficient catalyst for the conversion of unutilized sugars derived from hemicelluloses. Appl. Catal. A 435–443, 197–203 (2012)CrossRefGoogle Scholar
  27. 27.
    S. Thakur, S. Pandey, O.A. Arotiba, Development of a sodium alginate-based organic/inorganic superabsorbent composite hydrogel for adsorption of methylene blue. Carbohydr. Polym. 153, 34–46 (2016)CrossRefGoogle Scholar
  28. 28.
    M. Kimling, R.A. Caruso, Sol-gel synthesis of hierarchically porous TiO2 beads using calcium alginate beads as sacrificial templates. J. Mater. Chem. 22, 4073–4082 (2012)CrossRefGoogle Scholar
  29. 29.
    M. Buaki-sogo, M. Serra, A. Primo, M. Alvaro, Alginate as template in the preparation of active titania photocatalysts. ChemCatChem 5, 513–518 (2013)CrossRefGoogle Scholar
  30. 30.
    C. Yu, X. Li, Z. Liu, X. Yang, Y. Huang, J. Lin, J. Zhang, C. Tang, Synthesis of hierarchically porous TiO2 nanomaterials using alginate as soft templates. Mater. Res. Bull. 83, 609–614 (2016)CrossRefGoogle Scholar
  31. 31.
    J.Q. Albarelli, D.T. Santos, S. Murphy, M. Oelgemo, Use of Ca-alginate as a novelsupport for TiO2 immobilization in methylene blue decolorisation. Water Sci. Technol. 60, 1081–1087 (2009)CrossRefGoogle Scholar
  32. 32.
    P. Cai, S. Zhou, D. Ma, S. Liu, W. Chen, S. Huang, Fe2O3-modified porous BiVO4 nanoplates with enhanced photocatalytic activity. Nano-Micro Lett. 7, 183–193 (2015)CrossRefGoogle Scholar
  33. 33.
    Y. Zhang, B. Shen, H. Huang, Y. He, B. Fei, F. Lv, BiPO4/reducedgraphene oxide composites photocatalyst with high photocatalytic activity. Appl. Surf. Sci. 319, 272–277 (2014)CrossRefGoogle Scholar
  34. 34.
    B. Qu, Y.Sun,L. Liu, C. Li, C. Yu, X. Zhang, Y. Chen, Ultrasmall Fe2O3 nanoparticles/MoS2 nanosheets composite as high-performance anode material for lithium ion batteries. Sci. Rep. 7, 42772 (2017).  https://doi.org/10.1038/srep42772 CrossRefGoogle Scholar
  35. 35.
    T. Yamashita, P. Hayes, Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials. Appl. Surf. Sci. 254, 2441–2449 (2008)CrossRefGoogle Scholar
  36. 36.
    X.L. Hu, J.C. Yu, J.M. Gong, Q. Li, G.S. Li, Alpha-Fe2O3 nanorings prepared by a microwave-assisted hydrothermal process and their sensing properties. Adv. Mater. 19, 2324–2329 (2007)CrossRefGoogle Scholar
  37. 37.
    M. Hermanek, R. Zboril, I. Medrik, J. Pechousek, C. Gregor, Catalytic efficiency of iron(III) oxides in decomposition of hydrogen peroxide: competition between the surface area and crystallinity of nanoparticles. J. Am. Chem. Soc. 129, 10929–10936 (2007)CrossRefGoogle Scholar
  38. 38.
    V. Stengl, S. Bakardjieva, Molybdenum-doped anatase and its extraordinary photocatalytic activity in the degradation of orange II in the UV and Vis regions. J. Phys. Chem. C 114, 19308–19317 (2010)CrossRefGoogle Scholar
  39. 39.
    T.J. Cai, M. Yue, X.W. Wang, Q. Deng, Preparation, characterization, and photocatalytic performance of NdPW12O40/TiO2 composite catalyst. Chin. J. Catal. 28, 10–16 (2007)CrossRefGoogle Scholar
  40. 40.
    J.V. Kumar, R. Karthik, S.M. Chen, V. Muthuraj, K. Chelladurai, Fabrication of potato-like silver molybdate microstructures for photocatalytic degradation of chronic toxicity ciprofloxacin and highly selective electrochemical detection of H2O2. Sci. Rep. 6, 1–13 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • M. Nithya
    • 1
  • Keerthi Praveen
    • 1
  • S. Saral sessal
    • 1
  • U. Sathya
    • 1
  • N. Balasubramanian
    • 2
  • A. Pandurangan
    • 1
  1. 1.Department of Chemistry, CEG campusAnna UniversityChennaiIndia
  2. 2.Department of Chemical Engineering, A.C. Tech. CampusAnna UniversityChennaiIndia

Personalised recommendations