Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 17, pp 14723–14732 | Cite as

Microwave-assisted hydrothermal synthesis of SnO2/reduced graphene-oxide nanocomposite as anode material for high performance lithium-ion batteries

  • N. Naresh
  • D. Narsimulu
  • Paramananda Jena
  • E. S. Srinadhu
  • N. Satyanarayana
Article
  • 66 Downloads

Abstract

Surfactant and organic solvents free SnO2 nanospheres and SnO2/reduced graphene oxide (SnO2/rGO) nanocomposite were prepared by microwave assisted hydrothermal method. X-ray diffraction (XRD) and Raman spectroscopy results confirm the formation of pure nanocrystalline rutile phase of SnO2 and nanostructured rutile phase of SnO2 over the amorphous structured rGO. FE-SEM, EDX and HR-TEM results showed the formation of spherical shape SnO2 nanoparticles and the formation of spherical shape SnO2 nanoparticles over the crumpled nanosheets like morphology of rGO. The electrochemical measurements of lithium-ion batteries fabricated using pure spherical shape SnO2 nanoparticles and crumpled nanosheets like morphology of SnO2/rGO nanocomposite as an anode material showed the good initial discharge–charge capacity of 2128 and 1718 mA h g−1 respectively. The capacity retention after 50 cycles is found to be 349 mAh g−1 at a current density of 500 mA g−1 for the lithium-ion battery fabricated using pure spherical shape SnO2 nanoparticles and the capacity retention after 300 cycles is found to be 318 mAh g−1 at a current density of 500 mA g−1 for the lithium-ion battery fabricated using SnO2/rGO nanocomposite, which is much better than the reported values. The observed better electrochemical performance of the lithium-ion battery is attributed to the formation of spherical shape SnO2 nanoparticles over the crumpled nanosheets like morphology of highly porous graphene and also increased electronic conductivity of SnO2/rGO nanocomposite. Hence, the crumpled nanosheets like morphology of highly porous of SnO2/rGO nanocomposite prepared by microwave hydrothermal method can be a high-performance anode material for a lithium-ion battery application.

Notes

Acknowledgements

Authors are grateful to NRB-DRDO, DST, CSIR, UGC, AICTE and DAE-BRNS, Govt. of India for financial support through major research project Grants. Authors are also grateful to CIF, Pondicherry University for using characterization facilities.

References

  1. 1.
    Y. Idota, Science 276, 1395 (1997)CrossRefGoogle Scholar
  2. 2.
    J.M. Tarascon, M. Armand, Nature 414, 359 (2001)CrossRefGoogle Scholar
  3. 3.
    P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J.M. Tarascon, Nature 407, 496 (2000)CrossRefGoogle Scholar
  4. 4.
    X. Wu, Z. Wang, M. Yu, L. Xiu, J. Qiu, Adv. Mater. 29, 1 (2017)Google Scholar
  5. 5.
    Y. Dong, M. Yu, Z. Wang, Y. Liu, X. Wang, Z. Zhao, J. Qiu, Adv. Funct. Mater. 26, 7590 (2016)CrossRefGoogle Scholar
  6. 6.
    Z.H. Li, T.P. Zhao, X.Y. Zhan, D.S. Gao, Q.Z. Xiao, G.T. Lei, Electrochim. Acta 55, 4594 (2010)CrossRefGoogle Scholar
  7. 7.
    X.W. Lou, D. Deng, J.Y. Lee, L. Archer, Chem. Mater. 20, 6562 (2008)CrossRefGoogle Scholar
  8. 8.
    D. Narsimulu, B.N. Rao, M. Venkateswarlu, E.S. Srinadhu, N. Satyanarayana, Ceram. Int. 42, 16789 (2016)CrossRefGoogle Scholar
  9. 9.
    T. Şener, E. Kayhan, M. Sevim, Ö Metin, J. Power Sources 288, 36 (2015)CrossRefGoogle Scholar
  10. 10.
    H.J. Wang, J.M. Wang, W. Bin Fang, H. Wan, L. Liu, H.Q. Lian, H.B. Shao, W.X. Chen, J.Q. Zhang, C.N. Cao, Electrochem. Commun. 12, 194 (2010)CrossRefGoogle Scholar
  11. 11.
    L. Li, X. Yin, S. Liu, Y. Wang, L. Chen, T. Wang, Electrochem. Commun. 12, 1383 (2010)CrossRefGoogle Scholar
  12. 12.
    A.S. Hassan, K. Moyer, B.R. Ramachandran, C.D. Wick, J. Phys. Chem. 120, 2036 (2016)Google Scholar
  13. 13.
    Y. Shi, D. Ma, W. Wang, L. Zhang, X. Xu, J. Mater. Sci. 52, 3545 (2017)CrossRefGoogle Scholar
  14. 14.
    Z. Li, G. Wu, S. Deng, S. Wang, Y. Wang, J. Zhou, S. Liu, W. Wu, M. Wu, Chem. Eng. J. 283, 1435 (2016)CrossRefGoogle Scholar
  15. 15.
    J. Ning, T. Jiang, K. Men, Q. Dai, D. Li, Y. Wei, B. Liu, G. Chen, B. Zou, G. Zou, J. Phys. Chem. C 113, 14140 (2009)CrossRefGoogle Scholar
  16. 16.
    X. Ye, W. Zhang, Q. Liu, S. Wang, Y. Yang, H. Wei, New J. Chem. 39, 130 (2014)CrossRefGoogle Scholar
  17. 17.
    D.V. Szabó, G. Kilibarda, S. Schlabach, V. Trouillet, M. Bruns, J. Mater. Sci. 47, 4383 (2012)CrossRefGoogle Scholar
  18. 18.
    Y. Deng, C. Fang, G. Chen, J. Power Sources 304, 81 (2016)CrossRefGoogle Scholar
  19. 19.
    J. Lin, Z. Peng, C. Xiang, G. Ruan, Z. Yan, D. Natelson, J.M. Tour, ACS NANO 7, 6001–6006 (2013)CrossRefGoogle Scholar
  20. 20.
    J. Chao Zhong, Z. Wang, H. Chen, Liu, J. Phys. Chem. C 115, 25115–25120 (2011)CrossRefGoogle Scholar
  21. 21.
    J. Cui, S. Yao, J.-Q. Huang, L. Qin, W.G. Chong, Z. Sadighi, J. Huang, Z. Wang, J.-K. Kim, Energy Storage Mater. 17, 30174 (2017)Google Scholar
  22. 22.
    X.L. Huang, R.Z. Wang, D. Xu, Z.L. Wang, H.G. Wang, J.J. Xu, Z. Wu, Q.C. Liu, Y. Zhang, X.B. Zhang, Adv. Funct. Mater. 23, 4345 (2013)CrossRefGoogle Scholar
  23. 23.
    Y. Dong, S. Liu, Y. Liu, Y. Tang, T. Yang, X. Wang, Z. Wang, Z. Zhao, J. Qiu, J. Mater. Chem. A 4, 17718 (2016)CrossRefGoogle Scholar
  24. 24.
    X. Jiang, X. Yang, Y. Zhu, K. Fan, P. Zhao, C. Li, New J Chem. 37, 3671 (2013)CrossRefGoogle Scholar
  25. 25.
    V. Sridhar, H. Park, New J. Chem. 41, 442 (2017)CrossRefGoogle Scholar
  26. 26.
    S. Jiang, W. Yue, Z. Gao, Y. Ren, H. Ma, X. Zhao, Y. Liu, X. Yang, J. Mater. Sci. 48, 3870 (2013)CrossRefGoogle Scholar
  27. 27.
    Z.W. Pan, Science 291, 1947 (2001)CrossRefGoogle Scholar
  28. 28.
    O. Lupan, L. Chow, G. Chai, H. Heinrich, S. Park, A. Schulte, J. Cryst. Growth 311, 152 (2008)CrossRefGoogle Scholar
  29. 29.
    Z. Liu, D. Zhang, S. Han, C. Li, T. Tang, W. Jin, X. Liu, B. Lei, C. Zhou, Adv. Mater. 15, 1754 (2003)CrossRefGoogle Scholar
  30. 30.
    O. Lupan, L. Chow, G. Chai, A. Schulte, S. Park, H. Heinrich, Mater. Sci. Eng. B 157, 101 (2009)CrossRefGoogle Scholar
  31. 31.
    X. Xia, S. Li, X. Wang, J. Liu, Q. Wei, X. Zhang, J. Mater. Sci. 48, 3378 (2013)CrossRefGoogle Scholar
  32. 32.
    C.C. Wu, C.Y. Shiau, D.W. Ayele, W.N. Su, M.Y. Cheng, C.Y. Chiu, B.J. Hwang, Chem. Mater. 22, 4185 (2010)CrossRefGoogle Scholar
  33. 33.
    V. Subramanian, W.W. Burke, Z. Hongwei, W. Bingqing, J. Phys. Chem. C 112, 4550 (2008)CrossRefGoogle Scholar
  34. 34.
    Y. Zhu, H. Guo, H. Zhai, C. Cao, ACS Appl. Mater. Interfaces 7, 2745 (2015)CrossRefGoogle Scholar
  35. 35.
    B.D. Boruah, A. Misra, Energy Storage Mater. 5, 103 (2016)CrossRefGoogle Scholar
  36. 36.
    Y. Liu, Y. Jiao, Z. Zhang, F. Qu, A. Umar, X. Wu, ACS Appl. Mater. Interfaces 6, 2174–2184 (2014)CrossRefGoogle Scholar
  37. 37.
    L. Liu, M. An, P. Yang, J. Zhang, Sci. Rep. 5, 9055 (2015)CrossRefGoogle Scholar
  38. 38.
    D. Narsimulu, S. Vinoth, E.S. Srinadhu, N. Satyanarayana, Ceram. Int. 44, 201 (2018)CrossRefGoogle Scholar
  39. 39.
    N.R. Srinivasan, S. Mitra, R. Bandyopadhyaya, Phys. Chem. Chem. Phys. 16, 6630 (2014)CrossRefGoogle Scholar
  40. 40.
    R. Demir-cakan, Y. Hu, M. Antonietti, J. Maier, M. Titirici, Chem. Mater. 20, 1227 (2008)CrossRefGoogle Scholar
  41. 41.
    V. Renman, M. Valvo, C. Tai, I. Zimmermann, M. Johnsson, K. Edstro, J. Phys. Chem. C 121, 5949 (2017)CrossRefGoogle Scholar
  42. 42.
    Z. Huang, H. Gao, Q. Wang, Y. Zhao, G. Li, Mater. Lett. 186, 231 (2017)CrossRefGoogle Scholar
  43. 43.
    G.Z. Xing, Y. Wang, J.I. Wong, Y.M. Shi, Z.X. Huang, S. Li, H.Y. Yang, Appl. Phys. Lett. 105, 143905 (2014)CrossRefGoogle Scholar
  44. 44.
    D. Zhou, W.L. Song, X. Li, L.Z. Fan, Electrochim. Acta 207, 9 (2016)CrossRefGoogle Scholar
  45. 45.
    P. Wu, N. Du, H. Zhang, J. Yu, Y. Qi, D. Yang, Nanoscale 3, 746 (2011)CrossRefGoogle Scholar
  46. 46.
    J.M. Chem, J. Mater. Chem. 22, 975 (2012)CrossRefGoogle Scholar
  47. 47.
    C. Li, W. Wei, S. Fang, H. Wang, Y. Zhang, Y. Gui, R. Chen, J. Power Sources 195, 2939 (2010)CrossRefGoogle Scholar
  48. 48.
    M. Zhang, D. Lei, Z. Du, X. Yin, L. Chen, Q. Li, Y. Wang, T. Wang, J. Mater. Chem. 21, 1673 (2011)CrossRefGoogle Scholar
  49. 49.
    D. Wang, X. Li, J. Wang, J. Yang, D. Geng, R. Li, M. Cai, T. Sham, X. Sun, J. Phys. Chem. C 116, 22149 (2012)CrossRefGoogle Scholar
  50. 50.
    H. Qiao, Z. Zheng, L. Zhang, L. Xiao, J. Mater. Sci. 43, 2778 (2008)CrossRefGoogle Scholar
  51. 51.
    Y. Zhu, H. Guo, H. Zhai, ACS Appl. Mater. Interfaces 7, 2745 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysicsPondicherry UniversityPuducherryIndia
  2. 2.School of Materials Science and TechnologyIndian Institute of Technology (Banaras Hindu University)VaranasiIndia
  3. 3.Department of Physics and AstronomyClemson UniversityClemsonUSA

Personalised recommendations