Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 17, pp 14710–14722 | Cite as

Enhanced photoelectrochemical performance of hydrothermally grown tetravalent impurity (Si4+) doped zinc oxide nanostructures for solar water splitting applications

  • Akash Sharma
  • Mohua Chakraborty
  • R. Thangavel
Article

Abstract

We report the photoelectrochemical performance of Si-doped ZnO nanorods (NRs) synthesized via two step sol–gel and hydrothermal technique. In the X-ray diffraction patterns the prominent (002) peak confirms the hexagonal wurtzite phase for all samples. In addition to this, the Field Emission Scanning Electron Microscopy images also confirm the hexagonal shape of the NRs with the inclusion of this group IV dopant. The absorption spectra clearly indicates the increase in absorbance in the visible region after doping Si as compared with the undoped ZnO NRs. Bandgap tuning has been noted to be possible after doping. With the insertion of Si4+ ion into the ZnO matrix, the oxygen defects acting as recombination centers are reduced, as observed from the photoluminescence (PL) spectrum. We obtain a photocurrent density of 1.101 mA cm−2 values (approximately 4.5 times higher than the ZnO sample) at + 0.438 V in presence of 0.1 M NaOH electrolyte solution under visible light illumination (AM 1.5G) for the 8% Si-doped ZnO NRs sample. We attribute this enhancement to the reduction in recombination centers causing suppression of electron–hole recombination due to the reduced oxygen defects as observed in the PL spectrum. The enhanced absorption along with higher surface area of the NRs also promoted the increase in photocurrent value for this Si doped sample. The stability tests conceived that the doped ZnO NRs samples can better behave as a promising photoelectrode material for further generation of clean green energy.

Notes

Acknowledgements

The authors acknowledge the Department of Science and Technology (DST) for the project with Grant Number SR/FTP/PS-184/2012, SERB vide Dy. No. SERB/F/5439/2013-14 dated 25.11.2013 and Faculty Research Scheme-FRS (54)/2103-2014/APH. The authors would also like to thank the Ministry of Human Resource and Development project under the Scheme-Establishment of Centre of Excellence for Training and Research in Frontier Areas of Science and Technology (FAST) in Renewable Energy vide letter F. No. 5-5/2014-TS.VII dated 04.09.2014. The authors would like to thank Indian Institute of Technology (Indian School of Mines), Dhanbad, India for providing research fellowship and Central Research Facility (CRF) respectively. We are also thankful to Dr. K. Asokan, Scientist F, Materials Science Division, Inter University Accelerator Centre, New Delhi for his support in carrying out the Hall measurements. One of the authors M.C. would like to acknowledge Indo-US Science and Technology Forum (IUSSTF) for providing international Bhaskara Advanced Solar Energy (BASE-2016) fellowship.

References

  1. 1.
    M.G. Walter, E.L. Warren, J.R. McKone, S.W. Boettcher, Q. Mi, E.A. Santori, N.S. Lewis, Chem. Rev. 110, 6446 (2010)CrossRefGoogle Scholar
  2. 2.
    S.Y. Gurudayal, M.H. Chiam, P.S. Kumar, H.L. Bassi, J. Seng, Barber, L.H. Wong, ACS Appl. Mater. Interfaces 6, 5852 (2014)CrossRefGoogle Scholar
  3. 3.
    H. Hsu, L. Ji, H.S. Ahn, J. Zhao, E.T. Yu, A.J. Bard, J. Am. Chem. Soc. 137, 14758 (2015)CrossRefGoogle Scholar
  4. 4.
    S.Y. Tee, K.Y. Win, W.S. Teo, L.D. Koh, S. Liu, C.P. Teng, M.Y. Han, Adv. Sci. 4, 1600337 (2017)CrossRefGoogle Scholar
  5. 5.
    T. Hong, Z. Liu, H. Liu, J. Liu, X. Zhang, J. Han, K. Guo, B. Wang, J. Mater. Chem. A 3, 4239 (2015)CrossRefGoogle Scholar
  6. 6.
    K. Keis, L. Vayssieres, H. Rensmo, S.-E. Lindquist, A. Hagfeldt, J. Electrochem. Soc. 148, A149 (2001)CrossRefGoogle Scholar
  7. 7.
    Z. Zhang, P. Wang, J. Mater. Chem. 22, 2456 (2012)CrossRefGoogle Scholar
  8. 8.
    A. Paracchino, V. Laporte, K. Sivula, M. Grätzel, E. Thimsen, Nat. Mater. 10, 456 (2011)CrossRefGoogle Scholar
  9. 9.
    S.U.M. Khan, M. Al-Shahry, W.B. Ingler, Science 297, 2243 (2002)CrossRefGoogle Scholar
  10. 10.
    I.S. Cho, C.H. Lee, Y. Feng, M. Logar, P.M. Rao, L. Cai, D.R. Kim, R. Sinclair, X. Zheng, Nat. Commun. 4, 1723 (2013)CrossRefGoogle Scholar
  11. 11.
    J. Lin, P. Hu, Y. Zhang, M. Fan, Z. He, C.K. Ngaw, J.S.C. Loo, D. Liao, T.T.Y. Tan, RSC Adv. 3, 9330 (2013)CrossRefGoogle Scholar
  12. 12.
    Y. Liu, J. Li, W. Li, Y. Yang, Y. Li, Q. Chen, J. Phys. Chem. C 119, 14834 (2015)CrossRefGoogle Scholar
  13. 13.
    S.P. Berglund, D.W. Flaherty, N.T. Hahn, A.J. Bard, C.B. Mullins, J. Phys. Chem. C 115, 3794 (2011)CrossRefGoogle Scholar
  14. 14.
    P.S. Archana, Z. Shan, S. Pan, A. Gupta, Int. J. Hydrog. Energy 42, 8475 (2017)CrossRefGoogle Scholar
  15. 15.
    M. Chakraborty, D. Roy, A. Biswas, R. Thangavel, G. Udayabhanu, RSC Adv. 6, 75063 (2016)CrossRefGoogle Scholar
  16. 16.
    Y. Wang, Y.Z. Zheng, S. Lu, X. Tao, Y. Che, J.F. Chen, ACS Appl. Mater. Interfaces 7, 6093 (2015)CrossRefGoogle Scholar
  17. 17.
    F. Wang, L. Song, H. Zhang, L. Luo, D. Wang, J. Tang, J. Electron. Mater. 46, 4716 (2017)CrossRefGoogle Scholar
  18. 18.
    A. Wolcott, W.A. Smith, T.R. Kuykendall, Y. Zhao, J.Z. Zhang, Adv. Funct. Mater. 19, 1849 (2009)CrossRefGoogle Scholar
  19. 19.
    W.-K. Hong, J.I. Sohn, D.-K. Hwang, S.-S. Kwon, G. Jo, S. Song, S.-M. Kim, H.-J. Ko, S.-J. Park, M.E. Welland, T. Lee, Nano Lett. 8, 950 (2008)CrossRefGoogle Scholar
  20. 20.
    M. Gratzel, Nature 414, 338 (2001)CrossRefGoogle Scholar
  21. 21.
    N.M. Vuong, J.L. Reynolds, E. Conte, Y.I. Lee, J. Phys. Chem. C 119, 24323 (2015)CrossRefGoogle Scholar
  22. 22.
    A. Soudi, P. Dhakal, Y. Gu, Appl. Phys. Lett. 96, 2008 (2010)CrossRefGoogle Scholar
  23. 23.
    W.I. Park, D.H. Kim, S.W. Jung, G.C. Yi, Appl. Phys. Lett. 80, 4232 (2002)CrossRefGoogle Scholar
  24. 24.
    D.B. Potter, M.J. Powell, J.A. Darr, I.P. Parkin, C.J. Carmalt, RSC Adv. 7, 10806 (2017)CrossRefGoogle Scholar
  25. 25.
    L. Liang, Z. Huang, L. Cai, W. Chen, B. Wang, K. Chen, H. Bai, Q. Tian, B. Fan, ACS Appl. Mater. Interfaces 6, 20585 (2014)CrossRefGoogle Scholar
  26. 26.
    A.B. Djurišić, Y.H. Leung, K.H. Tam, L. Ding, W.K. Ge, H.Y. Chen, S. Gwo, Appl. Phys. Lett. 88, 103107 (2006)CrossRefGoogle Scholar
  27. 27.
    H. Yuan, J. Mater. Sci. 23, 2075 (2012)Google Scholar
  28. 28.
    S.N. Sarangi, J. Phys. D 49, 355103 (2016)CrossRefGoogle Scholar
  29. 29.
    M.J. Height, L. Mädler, S.E. Pratsinis, F. Krumeich, Chem. Mater. 18, 572 (2006)CrossRefGoogle Scholar
  30. 30.
    K.H. Tam, C.K. Cheung, Y.H. Leung, A.B. Djurišić, C.C. Ling, C.D. Beling, S. Fung, W.M. Kwok, W.K. Chan, D.L. Phillips, L. Ding, W.K. Ge, J. Phys. Chem. B 110, 20865 (2006)CrossRefGoogle Scholar
  31. 31.
    Y. Yang, S. Niu, D. Han, T. Liu, G. Wang, Y. Li, Adv. Energy Mater. 7, 1 (2017)Google Scholar
  32. 32.
    C.L. Hsu, S.J. Chang, Small 10, 4562 (2014)CrossRefGoogle Scholar
  33. 33.
    F.X. Xiao, J. Miao, H.B. Tao, S.F. Hung, H.Y. Wang, H.Bin Yang, J. Chen, R. Chen, B. Liu, Small 11, 2115 (2015)CrossRefGoogle Scholar
  34. 34.
    C.F. Liu, Y.J. Lu, C.C. Hu, ACS Omega 3, 3429 (2018)CrossRefGoogle Scholar
  35. 35.
    J. Wang, T. Tsuzuki, L. Sun, X. Wang, ACS Appl. Mater. Interfaces 2, 957 (2010)CrossRefGoogle Scholar
  36. 36.
    R. Chowdhury, S. Adhikari, P. Rees, Phys. B Condens. Matter 405, 4763 (2010)CrossRefGoogle Scholar
  37. 37.
    X. An, G. Meng, Q. Wei, L. Zhang, Cryst. Growth Des. 6, 1967 (2006)CrossRefGoogle Scholar
  38. 38.
    A.P. Goodey, S.M. Eichfeld, K.-K. Lew, J.M. Redwing, T.E. Mallouk, J. Am. Chem. Soc. 129, 12344 (2007)CrossRefGoogle Scholar
  39. 39.
    J. Zhao, L. Qin, L. Zhang, Phys. E 40, 795 (2008)CrossRefGoogle Scholar
  40. 40.
    T. Minami, H. Sato, H. Nanto, S. Takata, Jpn. J. Appl. Phys. 25, L776 (1986)CrossRefGoogle Scholar
  41. 41.
    W. Körner, C. Elsässer, Phys. Rev. B 83, 1 (2011)Google Scholar
  42. 42.
    H.C. Wu, Y.C. Peng, T.P. Shen, Materials 5, 2088 (2012)CrossRefGoogle Scholar
  43. 43.
    J. Clatot, M. Nistor, A. Rougier, Thin Solid Films 531, 197 (2013)CrossRefGoogle Scholar
  44. 44.
    R. Thangavel, R. Singh Moirangthem, W.S. Lee, Y.C. Chang, P.K. Wei, J. Kumar, J. Raman Spectrosc. 41, 1594 (2010)CrossRefGoogle Scholar
  45. 45.
    M. Chakraborty, P. Mahapatra, R. Thangavel, Thin Solid Films 612, 49 (2016)CrossRefGoogle Scholar
  46. 46.
    I. Sorar, D. Saygin-Hinczewski, M. Hinczewski, F.Z. Tepehan, Appl. Surf. Sci. 257, 7343 (2011)CrossRefGoogle Scholar
  47. 47.
    A. Sharma, M. Chakraborty, R. Thangavel, G. Udayabhanu, J. Sol-Gel. Sci. Technol. 85, 1 (2018)CrossRefGoogle Scholar
  48. 48.
    M. Subramanian, P. Thakur, S. Gautam, K.H. Chae, M. Tanemura, T. Hihara, S. Vijayalakshmi, T. Soga, S.S. Kim, K. Asokan, R. Jayavel, J. Phys. D 42, 105410 (2009)CrossRefGoogle Scholar
  49. 49.
    J. Clatot, G. Campet, A. Zeinert, C. Labrugère, M. Nistor, A. Rougier, Sol. Energy Mater. Sol. Cells 95, 2357 (2011)CrossRefGoogle Scholar
  50. 50.
    S.A. Ansari, A. Nisar, B. Fatma, W. Khan, A.H. Naqvi, Mater. Sci. Eng. B 177, 428 (2012)CrossRefGoogle Scholar
  51. 51.
    R.O. Yathisha, Y. Arthoba Nayaka, J. Mater. Sci. 53, 678 (2018)CrossRefGoogle Scholar
  52. 52.
    E. Chason, P.R. Guduru, J. Appl. Phys. 119, 191101 (2016)CrossRefGoogle Scholar
  53. 53.
    J.E. Allen, E.R. Hemesath, D.E. Perea, J.L. Lensch-Falk, Z.Y. Li, F. Yin, M.H. Gass, P. Wang, A.L. Bleloch, R.E. Palmer, L.J. Lauhon, Nat. Nanotechnol. 3, 168 (2008)CrossRefGoogle Scholar
  54. 54.
    F.-Y. Wang, Q.-D. Yang, G. Xu, N.-Y. Lei, Y.K. Tsang, N.-B. Wong, J.C. Ho, Nanoscale 3, 3269 (2011)CrossRefGoogle Scholar
  55. 55.
    L. Song, L. Luo, J. Song, H. Zhang, X. Li, S. Cheng, W. Jin, J. Tang, L. Liu, F. Wang, Catalysts 7, 371 (2017)CrossRefGoogle Scholar
  56. 56.
    A.P. Roth, J.B. Webb, D.F. Williams, Phys. Rev. B 25, 7836 (1982)CrossRefGoogle Scholar
  57. 57.
    E. Burstein, Phys. Rev. 93, 632 (1954)CrossRefGoogle Scholar
  58. 58.
    T.S. Moss, Phys. Status Solid 131, 415 (1985)CrossRefGoogle Scholar
  59. 59.
    S. Klubnuan, S. Suwanboon, P. Amornpitoksuk, Opt. Mater. 53, 134 (2016)CrossRefGoogle Scholar
  60. 60.
    J.P. Dhal, B.G. Mishra, G. Hota, RSC Adv. 5, 58072 (2015)CrossRefGoogle Scholar
  61. 61.
    H. Gerischer, J. Electroanal. Chem. 82, 133 (1977)CrossRefGoogle Scholar
  62. 62.
    H. Gerischer, N. Sorg, Electrochim. Acta 37, 827 (1992)CrossRefGoogle Scholar
  63. 63.
    K. Sun, K. Madsen, P. Andersen, W. Bao, Z. Sun, D. Wang, Nanotechnology 23, 194013 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Solar Energy Research Laboratory, Department of Applied PhysicsIndian Institute of Technology (Indian School of Mines)DhanbadIndia
  2. 2.Centre of Excellence in Renewable EnergyIndian Institute of Technology (Indian School of Mines)DhanbadIndia
  3. 3.Indian Institute of Science Education and Research (IISER) KolkataMohanpurIndia

Personalised recommendations